Cross Reference Up

Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), 109-119.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Banks, WP and Hill, DK (1974). The Apparent Magnitude of Number Scaled by Random Production. Journal of Experimental Psychology 102 (2), 353-376. ISSN/ISBN:0022-1015. View Complete Reference Online information Works that this work references Works that reference this work
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. View Complete Reference Online information Works that this work references Works that reference this work
Bohachevsky, IO, Johnson, ME and Stein, ML (2006). A derivation of Benford’s law. American Journal of Mathematical and Management Sciences, 26(3–4), pp. 355–370. ISSN/ISBN:0196-6324. DOI:10.1080/01966324.2006.10737678. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, 59-63. View Complete Reference Online information Works that this work references Works that reference this work
Ciofalo, M (2009). Entropy, Benford’s first digit law, and the distribution of everything. Dipartimento di Ingegneria Nucleare, Università degli Studi di Palermo, Italy. View Complete Reference Online information Works that this work references Works that reference this work
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), 367-370. ISSN/ISBN:0097-3165. View Complete Reference No online information available Works that this work references Works that reference this work
Costa, J, dos Santos, J and Travassos, S (2012). An Analysis of Federal Entities’ Compliance with Public Spending: Applying the Newcomb-Benford Law to the 1st and 2nd Digits of Spending in Two Brazilian States*. R. Cont. Fin. – USP, São Paulo, v. 23, n. 60, pp. 187-198. View Complete Reference Online information Works that this work references Works that reference this work
Davis, B (1976). Some Remarks on Initial Digits. Fibonacci Quarterly 14(1), 13-14. ISSN/ISBN:0015-0517. View Complete Reference No online information available Works that this work references Works that reference this work
Dehaene, S and Mehler, J (1992). Cross-Linguistic Regularities in the Frequency of Number Words. Cognition 43(1), 1-29. ISSN/ISBN:0010-0277. View Complete Reference Online information Works that this work references Works that reference this work
Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), 321-329. ISSN/ISBN:0266-4763. View Complete Reference Online information Works that this work references Works that reference this work
Diniz, JA, Corrar, LJ and Slomski, V (2010). Análise digital: uma abordagem cognitiva na detecção de não conformidade em prestações de contas municipais. Anais do Congresso Controladoria e Contabilidade USP, São Paulo, SP, Brasil. POR View Complete Reference Online information Works that this work references Works that reference this work
Diniz, JA, dos Santos, J, Dieng, M and Diniz, MAA (2006). Comprovação de Eficácia da Aplicação de Modelos Contabilométricos no Campo daAuditoria Digital das Contas Públicas Municipais: caso de um Tribunal de Contas de um estado brasileiro. Proceedings of 6th Congresso USP de Controladoria e Contabilidade. POR View Complete Reference Online information Works that this work references Works that reference this work
Dorogovtsev, SN, Mendes, JFF and Oliveira, JG (2006). Frequency of occurrence of numbers in the World Wide Web. Physica A: Statistical Mechanics and its Applications 360(2), 548-556. ISSN/ISBN:0378-4371. View Complete Reference Online information Works that this work references Works that reference this work
dos Santos, J, Tenório, JNB and Silva, LGC (2003). Uma aplicação da Teoria das probabilidades na contabilometria: A Lei de Newcomb-Benford como medida para análise de dados no campo da auditoria contábil. Contabilidade, Gestão e Governança, 6(1), pp. 35-54. POR View Complete Reference No online information available Works that this work references Works that reference this work
dos Santos, J, Diniz, JA and Corrar, LJ (2005). The focus is the sampling theory in the fields of traditional accounting audit and digital audit: testing the Newcomb-Benford Law for the first digit of in public accounts. Brazilian Business Review 2(1), pp. 69-86. View Complete Reference Online information Works that this work references Works that reference this work
dos Santos, J, Diniz, JA and Ribeiro Filho, JF (2003). A Lei de Newcomb- Benford: uma aplicação para determinar o DNA-equivalente das despesas no setor público. Proceedings of 3rd Congresso usp de controladoria e contrabilidade congresso, Brazil. POR View Complete Reference Online information Works that this work references Works that reference this work
Dumas, CF and Devine, JH (2000). Detecting Evidence of Non-Compliance in Self- Reported Pollution Emissions Data: An Application of Benford’s Law. Selected Paper, American Agricultural Economics Association, Annual meeting. View Complete Reference Online information Works that this work references Works that reference this work
Eliazar, II (2013). Benford's Law: A Poisson Perspective. Physica A 392(16) pp. 3360–3373. DOI:10.1016/j.physa.2013.03.057. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Filipponi, P and Menicocci, R (1995). Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers. Fibonacci Quarterly 33(4), 325-331. ISSN/ISBN:0015-0517. View Complete Reference No online information available Works that this work references Works that reference this work
Fonseca, PMT da (2016). Digit analysis using Benford's Law : a bayesian approach. Masters Thesis, ISEG - Instituto Superior de Economia e Gestão, Lisbon School of Economics & Management. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Guilherme, HF, Montenegro, JM and dos Santos, J (2003). Uma aplicação da teoria das probabilidades na contabilometria: A Lei de Newcomb-Benford como uma Medida para Análise de Dados no Campo da Auditoria Contábil. Reference unknown. POR View Complete Reference No online information available Works that this work references No Bibliography works reference this work
Hafner, EM (1979). Circular slide roulette. IEEE Communications Magazine 17(2), pp. 29-32. View Complete Reference Online information Works that this work references Works that reference this work
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. View Complete Reference Online information Works that this work references Works that reference this work
Hickman, MJ and Rice, SK (2010). Digital Analysis of Crime Statistics: Does Crime Conform to Benford’s Law?. Journal of Quantitative Criminology 26(3), pp. 333-349. ISSN/ISBN:1573-7799. DOI:10.1007/s10940-010-9094-6. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. View Complete Reference No online information available Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1996). A note on distributions of true versus fabricated data. Perceptual and Motor Skills 83, pp. 776-778 Part 1. ISSN/ISBN:0031-5215. DOI:10.2466/pms.1996.83.3.776. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1999). Le premier chiffre significatif fait sa loi. La Recherche Hors Serie 316, pp. 72-74. FRE View Complete Reference Online information Works that this work references Works that reference this work
Humenberger, H (1996). Das Benford-Gesetz über die Verteilung der ersten Ziffer von Zahlen. Stochastik in der Schule 16(3), pp. 2–17. GER View Complete Reference Online information Works that this work references Works that reference this work
Humenberger, H (2000). Das Benford-Gesetz—warum ist die Eins als führende Ziffer von Zahlen bevorzugt?. In: Henn, HW, Förster, F and Meyer, J (eds.), Materialien für einen realitätsbezogenen Mathematikunterricht, Band 6, pp. 138–150. Schriftenreihe der ISTRON-Gruppe, Franzbecker, Hildesheim. GER View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. View Complete Reference Online information Works that this work references Works that reference this work
Irmay, S (1997). The relationship between Zipf's law and the distribution of first digits. Journal of Applied Statistics 24(4), pp. 383-393. ISSN/ISBN:0266-4763. DOI:10.1080/02664769723594. View Complete Reference Online information Works that this work references Works that reference this work
Iyengar, SS, Rajagopal, AK and Uppuluri, VRR (1983). String Patterns of Leading Digits. Applied Mathematics and Computation 12(4), pp. 321-337. ISSN/ISBN:0096-3003. DOI:10.1016/0096-3003(83)90045-0. View Complete Reference Online information Works that this work references Works that reference this work
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. View Complete Reference Online information Works that this work references Works that reference this work
Joannes-Boyau, R, Bodin, T, Scheffers, A, Sambridge, M and May, SM (2015). Using Benford’s law to investigate Natural Hazard dataset homogeneity. Nature -Scientific Reports 5:12046, pp. 1-8 . DOI:10.1038/srep12046. View Complete Reference Online information Works that this work references Works that reference this work
Jones, BK (2002). Logarithmic distributions in reliability analysis. Microelectronics and Reliability, 42(4-5), pp. 779-786. ISSN/ISBN:0026-2714. DOI:10.1016/S0026-2714(02)00031-8. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Kak, SC (1983). Strings of first digits of powers of a number. Indian J. Pure Appl. Math. 14(7), pp. 896-907. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Karavardar, A (2014). Benford’s Law and an Analysis in Istanbul Stock Exchange (BIST). International Journal of Business and Management, 9(4), pp. 160-172. DOI:10.5539/ijbm.v9n4p160. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Kossovsky, AE (2006). Towards a Better Understanding of the Leading Digits Phenomena. posted December 21, 2006 on arXiv:math/0612627. View Complete Reference Online information Works that this work references Works that reference this work
Kossovsky, AE (2012). Statistician's New Role as a Detective - Testing Data for Fraud. Ciencias Económicas 30(2), pp. 179-200 . ISSN/ISBN:0252-9521. View Complete Reference Online information Works that this work references Works that reference this work
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. View Complete Reference Online information Works that this work references Works that reference this work
Leemann, L and Bochsler, D (2014). A systematic approach to study electoral fraud. Electoral Studies, Vol. 35, Num. 0, pp. 33-47. ISSN/ISBN:0261-3794. DOI:10.1016/j.electstud.2014.03.005. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Lemons, DS (1986). On the Numbers of Things and the Distribution of first Digits. American Journal of Physics 54(9), pp. 816-817. ISSN/ISBN:0002-9505. DOI:10.1119/1.14453. View Complete Reference Online information Works that this work references Works that reference this work
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. View Complete Reference Online information Works that this work references Works that reference this work
Livio, M (2002). The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. New York: Broadway Books, pp. 232-236. ISSN/ISBN:9780307485526. View Complete Reference Online information Works that this work references Works that reference this work
Lowe, T, Murphy, S and Hayward, J (1999). The first digit law. Preprint. View Complete Reference No online information available Works that this work references No Bibliography works reference this work
Martín, AB (2003). Sistematización del proceso de depuración de los datos en estudios con seguimientos. PhD Thesis, Universitat Autònoma de Barcelona, Spain. SPA View Complete Reference Online information Works that this work references No Bibliography works reference this work
Mir, TA and Ausloos, M (2017). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology. DOI:10.1002/asi.23845. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Mitchell, J (2001). Clustering and psychological barriers: the importance of numbers. Journal of Futures Markets 21(5), pp. 395-428. ISSN/ISBN:0270-7314. DOI:10.1002/fut.2. View Complete Reference Online information Works that this work references Works that reference this work
Moret, MA, de Senna, V, Pereira, MG and Zebende, GF (2006). Newcomb-Benford law in astrophysical sources. International Journal of Modern Physics C 17(11), pp. 1597-1604. ISSN/ISBN:0129-1831. DOI:10.1142/S0129183106010054. View Complete Reference Online information Works that this work references Works that reference this work
Moret, MA, de Senna, V, Santana, MC and Zebende, GF (2009). Geometric Structural Aspects of Proteins and Newcomb-Benford Law. International Journal of Modern Physics C 20(12), pp. 1981-1988. DOI:10.1142/S0129183109014874. View Complete Reference Online information Works that this work references Works that reference this work
Morrison, KE (2010). The Multiplication Game. Mathematics Magazine 83, pp. 100-110. ISSN/ISBN:0025-570X. DOI:10.4169/002557010X482862. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), 72-91. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, pp. 69-81. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons, Hoboken, New Jersey. ISSN/ISBN:978-0-470-89046-2. View Complete Reference No online information available Works that this work references Works that reference this work
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons, Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. View Complete Reference No online information available Works that this work references Works that reference this work
Nigrini, MJ and Miller, SJ (2007). Benford’s Law Applied to Hydrology Data—Results and Relevance to Other Geophysical Data. Mathematical Geology 39(5), 469-490. ISSN/ISBN:0882-8121. View Complete Reference Online information Works that this work references Works that reference this work
Oriol, JC (2007). Formation à la statistique par la pratique d'enquêtes par questionnaires et la simulation: étude didactique d'une experience d'enseignment dans u department d'IUT. Ph.D. Thesis, Université Lumière, Lyon, France. View Complete Reference Online information Works that this work references Works that reference this work
Peterson, I (1998). First Digits. Science News Online, Ivars Peterson's MathTrek, 27 June. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (1998). The Uneven Distribution of Numbers in Nature. Arxiv preprint cond-mat/9808305, 1998 - arxiv.org. View Complete Reference Online information Works that this work references Works that reference this work
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6. View Complete Reference Online information Works that this work references Works that reference this work
Pocheau, A (2006). The significant digit law: a paradigm of statistical scale symmetries . European Physical Journal B 49(4), 491-511. ISSN/ISBN:1434-6028. View Complete Reference Online information Works that this work references Works that reference this work
Posch, PN (2004). Ziffernanalyse in der Fälschungsaufspürung. Benford’s Gesetz und Steuererklärungen in Theorie und Praxis. Unpublished manuscript. GER View Complete Reference Online information Works that this work references Works that reference this work
Posch, PN (2010). Ziffernanalyse. VEW Verlag Europäische Wirtschaft: Munich 2nd edition. GER View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), 521-538. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Rajagopal, AK, Uppuluri, VRR, Scott, DS, Iyengar, SS and Yellayi, M (1984). New structural properties of strings generated by leading digits of 2N. Applied Mathematics and Computation 14(3), 221-244. View Complete Reference Online information Works that this work references Works that reference this work
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571. View Complete Reference Online information Works that this work references Works that reference this work
Saville, A (2003). Using Benford's Law to predict data error and fraud. An examination of companies listed on the JSE securities exchange. E-print online. Last accessed 26Mar2015. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Saville, A (2006). Using Benford's law to detect data error and fraud: an examination of companies listed on the Johannesburg Stock Exchange. South African Journal of Economic and Management Sciences 9(3), 341-354. ISSN/ISBN:1015-8812. View Complete Reference Online information Works that this work references Works that reference this work
Schetnikov, AL and Schetnikova, AB (2002). Teaching and Research Seminar "The distribution of the first significant digits". Matematicheskoe obrazovanie (Mathematical Education), № 2(21), 2002, p. 107–123. (in Russian). RUS View Complete Reference Online information Works that this work references No Bibliography works reference this work
Schilling, MF (1992). Sequential Partitioning. American Mathematical Monthly 99(9), 846-855. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. View Complete Reference Online information Works that this work references Works that reference this work
Stewart, I (1994). Das Gesetz der ersten Ziffer. Mathematische Unterhaltungen, in: Spektrum der Wissenschaft (April), 16-20. GER View Complete Reference Online information Works that this work references Works that reference this work
Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498. View Complete Reference Online information Works that this work references Works that reference this work
Torres, J, Fernandez, S, Gamero, A and Sola, A (2007). How do numbers begin? (The first digit law). European Journal of Physics 28(3), L17-L25. ISSN/ISBN:0143-0807. DOI:10.1088/0143-0807/28/3/N04. View Complete Reference Online information Works that this work references Works that reference this work
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. View Complete Reference Online information Works that this work references Works that reference this work
Wallace, WA (2002). Assessing the quality of data used for benchmarking and decision- making. The Journal of Government Financial Management 51(3), pp. 16-22. View Complete Reference Online information Works that this work references Works that reference this work
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. View Complete Reference Online information Works that this work references Works that reference this work
Weisstein, EW (2009). Benford's Law. MathWorld (A Wolfram Web Resource). View Complete Reference Online information Works that this work references Works that reference this work
Wlodarski, J (1971). Fibonacci and Lucas Numbers tend to obey Benford’s law. Fibonacci Quarterly 9, 87-88. View Complete Reference No online information available Works that this work references Works that reference this work