This work is cited by the following items of the Benford Online Bibliography:
Berger, A and Evans, SN (2013). A Limit Theorem for Occupation Measures of Lévy Processes in Compact Groups. Stochastics and Dynamics 13(1), p. 1250008. DOI:10.1142/S0219493712500086. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Eliazar, II (2013). Benford's Law: A Poisson Perspective. Physica A 392(16) pp. 3360–3373. DOI:10.1016/j.physa.2013.03.057. | ||||
Finch, S (2011). Newcomb-Benford Law. Online publication - last accessed July 16, 2018. | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. | ||||
Lenci, A (2017). Benford's Law. Senior Essay, Saint Mary’s College of California, Department of Mathematics, Moraga, CA. | ||||
Phatarfod, R (2013). Some aspects of the Benford law of leading significant digits. The Mathematical Scientist, Applied Probability Trust, 38 (2), pp 73-85. ISSN/ISBN:03123685. | ||||
Poekl, G (2016). Newcomb-Benford's Law ohne Limits. 03.16 ZRFC Risk, Fraud & Compliance, Erich-Schmid-Verlag, Berlin, Germany, pp. 115-120. GER | ||||
Ross, KA (2012). First Digits of Squares and Cubes. Mathematics Magazine 85(1), pp. 36-42. DOI:10.4169/math.mag.85.1.36. | ||||
Seibert, J and Zahrádka, J (2014). First Digit Law and its Application. Scientific Papers of the University of Pardubice Series D, Faculty of Economics and Administration Vol. XXI, No. 30, pp. 75 - 82. CZE | ||||
Tsagbey, S, de Carvalho, M and Page, GL (2017). All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing . The American Statistician, 71, pp. 231--235. DOI:10.1080/00031305.2017.1311282. | ||||
Wojcik, MR (2013). How fast increasing powers of a continuous random variable converge to Benford’s law. Statistics and Probability Letters 83, pp. 2688–2692. ISSN/ISBN:0167-7152. DOI:10.1016/j.spl.2013.09.003. | ||||
Wojcik, MR (2013). Notes on scale-invariance and base-invariance for Benford's Law. arXiv:1307.3620 [math.PR]. |