This work cites the following items of the Benford Online Bibliography:
| Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. |
|
|
|
|
| Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. |
|
|
|
|
| Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. |
|
|
|
|
| Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5. |
|
|
|
|
| Brady, WG (1978). More on Benford’s law. Fibonacci Quarterly 16(1), pp. 51-52. |
|
|
|
|
| Brown, JR and Duncan, RL (1970). Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences. Fibonacci Quarterly 8, pp. 482-486. ISSN/ISBN:0015-0517. |
|
|
|
|
| Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63. |
|
|
|
|
| Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. |
|
|
|
|
| Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. |
|
|
|
|
| Cohen, DIA and Katz, TM (1984). Prime Numbers and the First Digit Phenomenon. Journal of Number Theory 18(3), pp. 261-268. ISSN/ISBN:0022-314X. DOI:10.1016/0022-314X(84)90061-1. |
|
|
|
|
| Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. |
|
|
|
|
| Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. |
|
|
|
|
| Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. |
|
|
|
|
| Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. |
|
|
|
|
| Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. |
|
|
|
|
| Hill, TP (1997). Benford law. Encyclopedia of Mathematics Supplement, vol. 1, pp. 102-103. |
|
|
|
|
| Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358. |
|
|
|
|
| Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. |
|
|
|
|
| Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. |
|
|
|
|
| Kunoff, S (1987). N! has the first digit property. Fibonacci Quarterly 25, pp. 365-367. |
|
|
|
|
| Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. |
|
|
|
|
| Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. |
|
|
|
|
| Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. |
|
|
|
|
| Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91. |
|
|
|
|
| Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83. |
|
|
|
|
| Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380. |
|
|
|
|
| Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. |
|
|
|
|
| Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109. |
|
|
|
|
| Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. |
|
|
|
|
| Raimi, RA (1985). The First Digit Phenomenon Again. Proceedings of the American Philosophical Society 129(2), pp. 211-219. ISSN/ISBN:0003-049X. |
|
|
|
|
| Schatte, P (1983). On H∞ -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122. |
|
|
|
|
| Sentance, WA (1973). A further analysis of Benford’s law. Fibonacci Quarterly 11, 490-494. |
|
|
|
|
| Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498. |
|
|
|
|
| Vogt, W (2000). Benford’s Gesetz : Steuer- und Budgetsündern auf der Spur – Zahlen lügen nicht. Schweizer Versicherung 9, 27-29. GER |
|
|
|
|
| Webb, W (1975). Distribution of the first digits of Fibonacci numbers. Fibonacci Quarterly 13, pp. 334-336. |
|
|
|
|
| Weyl, H (1916). Über die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen 77, 313-352. ISSN/ISBN:0025-5831. DOI:10.1007/BF01475864. GER |
|
|
|
|
| Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152. ISSN/ISBN:0002-9890. |
|
|
|
|
| Wlodarski, J (1971). Fibonacci and Lucas Numbers tend to obey Benford’s law. Fibonacci Quarterly 9, 87-88. |
|
|
|