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Benford’s Law, A Growth Industry

Kenneth A. Ross

Abstract. Often data in the real world have the property that the first digit 1 appears about
30% of the time, the first digit 2 appears about 17% of the time, and so on with the first digit
9 appearing about 5% of the time. This phenomenon is known as Benford’s law. This paper
provides a simple explanation, suitable for nonmathematicians, of why Benford’s law holds
for data that have been growing (or shrinking) exponentially over time. Two theorems verify
that Benford’s law holds if the initial values and rates of growth of the data appear at random.

INTRODUCTION. To get started, consider the sequence 2, 4, 8, 16, 32, 64, 128,
. . . , 21000. Each of these numbers has a first digit, starting out with 2, 4, 8, 1, 3, 6, 1.
About how many of these numbers do you think have first digit 1? What about the
other eight possible first digits? Consider the same questions for 9, 81, 729, . . . , 91000,
where the first few first digits are 9, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2. We will return
to these questions after Table 3.

Way back in 1881, Simon Newcomb observed that certain sets of data from the real
world have the property that the first digits of the numbers do not appear uniformly
often. In fact, the first digit 1 appears about 30% of the time, while the first digit
9 appears about 5% of the time. As often happens in science, this observation was
forgotten and rediscovered later. Frank Benford observed this phenomenon in 1938 [2],
and it has become known as Benford’s law or the “first-digit law.” He gave numerous
examples of data from many sources, including newspaper items, areas of rivers, street
addresses, cost data, and populations. We give another example in Table 1, namely
data based on the populations of 117 cities in Indiana, from Wikipedia based on the
2000 census.1 For a good history up to 1975 with many references, see Raimi [18].
More references will be given at the end of the paper.

Table 1.

first digit→ 1 2 3 4 5 6 7 8 9

number of cities 34 17 16 8 16 12 5 3 6

percent of cities 29.1 14.5 13.7 6.8 13.7 10.3 4.3 2.6 5.1

Recently, Benford’s law has gone public. In fact, it was discussed recently on a
public radio program, but listeners complained that it was not explained. That was
because it isn’t possible to explain it in a sound bite. Since Benford’s law applies to
many different sorts of data, it is natural to view it as a statistical phenomenon, so
most serious attempts at understanding it use probability. The most successful seems
to be Theodore Hill’s very nice, but sophisticated, analysis in [13]. I found his analy-
sis challenging, and I am reasonably acquainted with probability. Thus, neither Hill’s
result nor its proof is accessible to young students and others who have an interest
in Benford’s law. In my view, what is needed is a collection of special cases that are

http://dx.doi.org/10.4169/amer.math.monthly.118.07.571
1This is the first and only state that I examined for this purpose.
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readily understandable. In fact, I think it might be easiest to start with nonstatistical,
totally deterministic examples, which will be formalized in Theorem 1. Theorems 2
and 3 provide versions of Benford’s law.

This article is intended for four audiences. The discussion up to Figure 1 could be
used to explain Benford’s law to people with essentially no mathematical background,
while the discussion up to the proof of Theorem 1, just after Table 5, could be used to
explain the law to any motivated person who understands logarithms. Upper-division
undergraduate students, willing to assume the uniform distribution theorem, should be
able to read the proof of Theorem 1. The remaining proofs involve a little measure
theory and harmonic analysis.

MODELING BENFORD’S LAW. Here we will model populations of some old
cities in some region, with the following assumptions. Though the populations of the
cities probably started out as random, each of them grows (or shrinks) exponentially
over time, so that a census is a snapshot of the population-growth curves of the various
cities. We will see that this is why the observed populations years later will approxi-
mately satisfy Benford’s law.

We will focus at first on one city. The population of a city satisfies the equation
P(n) = ar n . Here n represents units of time in integers (such as years or decades).
We are only interested in the first digits of the populations. Since multiplying them by
any power of 10 won’t change the mathematics, we henceforth assume that the initial
“population” a satisfies 1 ≤ a < 10 and the rate of growth r satisfies 1 < r < 10.

More generally, suppose you have data collected regularly over time, and the data
describe a quantity which is increasing or decreasing exponentially. The data might
be populations as in Table 1, values of portfolios,2 weights of vegetables at a county
fair, etc. Suppose the length of time over which the data is collected is sufficiently
large; this can be quantified and will depend on the rate of growth. Then Bedford’s
law applies. Roughly, that’s because the time spent when the first digit is 1 is relatively
flat and is considerably longer than the time spent when the curve is increasing more
steeply. See Figure 1, showing how ar t increases from 10k to 10k+1. (If r < 1, the
picture is the mirror image of the one in Figure 1.) The first digit of ar t is 1 for the
time interval [c1, c2), it is 2 for the time interval [c2, c3), etc. So clearly the first digit
is 1 for much more time than it is 9.

We want to quantify these observations, so look again at Figure 1. For d =
1, 2, . . . , 9, the time that the first digit is d is the length of the interval [cd, cd+1).
To determine these times, we observe that the graph of ar t has height d · 10k at cd .
Thus

ar cd = d · 10k .

Using the rules of logarithms, we obtain

log10 a + cd log10 r = log10 d + k

and similarly

log10 a + cd+1 log10 r = log10(d + 1)+ k.

Thus

(cd+1 − cd) log10 r = log10(d + 1)− log10 d,
2Several articles study applications of Benford’s law to the detection of accounting fraud; see, e.g., [7] and

[15].

572 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 . 10k

2 . 10k

3 . 10k

4 . 10k

5 . 10k

6 . 10k

7 . 10k

8 . 10k

9 . 10k

10k+1

Figure 1.

so that

cd+1 − cd = A[log10(d + 1)− log10 d],

where A is the constant 1/ log10 r , which does not depend on k. Moreover, the time that
the curve takes to rise from 10k to 10k+1 is exactly c10 − c1 = A[log10(10)− log10 1] =
A. In other words, in this time interval, the fraction of time that the first digit of ar t is
d is

log10(d + 1)− log10 d = log10

(
d + 1

d

)
. (1)

Moreover, this observation applies to all such intervals [10k, 10k+1), k = 0,±1,
±2, . . . . The numbers in equation (1) are the numbers that arise in Benford’s law.
Approximations of them are given in Table 2.

Table 2.

d 1 2 3 4 5 6 7 8 9

log10
d+1

d 0.30103 0.17609 0.12494 0.09691 0.07918 0.06695 0.05799 0.05115 0.04576

Let’s return to discrete time, i.e., return to P(n) = ar n for integers n, and visualize
these values in Figure 1, i.e., visualize the points (n, P(n)) marching along the curve.
From the statement involving (1), one would expect that the fraction of these points
that would land in the interval [cd, cd+1) would be about log10

(
d+1

d

)
. This makes the

following theorem very plausible, though its proof (given later) is somewhat more
complicated.

For any x ≥ 1, we write D(x) for the first digit of x .

Theorem 1. Suppose that 1 ≤ a < 10, 1 < r < 10, and that r is rational. Then

lim
n→∞

1

n
#
{
k ≤ n : D(ar k) = d

}
= log10(d + 1)− log10 d, (2)

for d = 1, 2, 3, 4, 5, 6, 7, 8, 9.
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The uninvited hypothesis, that r be rational, comes up in the proof. In fact, equation
(2) holds for all but countably many real numbers r in (1, 10). Theorem 1 appears in
Raimi [18] and [19], and it essentially appears in Diaconis [6].

Theorem 1 suggests that, for reasonable choices of r and a, the numbers #{k ≤
100 : D(ar k) = d} will be close to 100[log10(d + 1)− log10 d]. It also suggests that
the numbers #{11 ≤ k ≤ 110 : D(ar k) = d} will be close to the same values, and I
prefer to look at this because the first few values of D(ar k) are likely to be predictable,
especially if r is close to 1. Table 3 gives some examples of actual counts. For example,
the third column indicates that the theorem predicts that about 30.1 out of 100 values
of a · r k will have first digit equal to 1. The fourth row indicates that exactly 31 of the
values {9 · 2k

: 11 ≤ k ≤ 110} have first digit equal to 1.

Table 3.

expected # first digits 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

a growth rate r 1 2 3 4 5 6 7 8 9

1 2 30 17 13 10 7 7 6 5 5

9 2 31 17 13 9 8 7 6 5 4

1 3 32 16 14 10 8 6 6 4 4

5 3 30 18 12 8 9 7 7 5 4

9 3 31 17 14 10 7 6 6 4 5

1 1.1 28 19 14 10 7 6 6 6 4

5 1.1 33 17 12 10 8 6 6 4 4

9 1.1 29 19 13 10 8 5 7 5 4

1 1.05 32 18 12 9 7 7 5 6 4

5 1.05 30 16 12 10 7 7 5 7 6

9 1.05 34 16 12 10 7 7 4 6 4

1 1.01 59 41 0 0 0 0 0 0 0

5 1.01 41 0 0 0 8 15 14 12 10

9 1.01 70 30 0 0 0 0 0 0 0

The answers to the questions at the beginning of the paper are similar. The nine
answers to the first question about 2, 4, 8, 16, . . . , 21000 are 301, 176, 125, 97, 79, 69,
56, 52, 45. The answers to the question about 9, 81, 729, . . . , 91000 are 297, 177, 125,
98, 80, 67, 58, 52, 46.

Note that r = 1.01 is too close to 1 to illustrate the theorem only checking
D(ar k) = d for k up to 110. On the other hand, with a = 1 and r = 1.01, the counts
for #{101 ≤ k ≤ 1100 : D(ar k) = d}, which should be close to 1000[log10(d + 1)−
log10 d], turn out to be 279, 173, 144, 112, 87, 61, 54, 48, and 42.

Theorem 1 is interesting, but it doesn’t explain the model involving old cities. It
explains the model if we focused on one city and its various populations over a long
period of time. With several cities in mind, it seems likely that their initial populations
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and growth rates are random. Therefore, the following version of Benford’s law seems
quite plausible.

Theorem 2. limn→∞ Pr[D(ar n) = d] = log10(d + 1)− log10 d.

Probability? We assume that the initial population a is selected at random from
[1, 10) by any random process, but the reader won’t lose anything by assuming that
the choices are uniformly distributed, i.e., for each interval I in [1, 10), the values a
fall into the interval I with probability length(I )/9. We assume that the growth rate is
selected uniformly from a fixed interval [s, u) in [1, 10) so that, for each interval I in
[s, u), the values are selected with probability length(I )/(u − s).

Theorem 2 implies that if n is sufficiently large, and if we take a sufficiently large
sample (say of size N ) of values (a, r) uniformly selected from the rectangle [1, 10)×
[s, u), then

#{(a, r) in the sample satisfying D(ar n) = d} ≈ N [log10(d + 1)− log10 d], (3)

for d = 1, 2, 3, 4, 5, 6, 7, 8, 9. We illustrate counts, by taking random samples from
[1, 10)× [1, 1.5) of size N = 1000. See Table 4.

Table 4.

expected # first digits −→ 301 176 125 97 79 67 58 51 46

value of n ↓ 1 2 3 4 5 6 7 8 9

10 273 190 140 129 66 60 47 54 41

10 312 175 135 92 70 66 61 46 43

20 305 176 127 89 74 73 58 58 40

20 304 154 143 85 75 69 69 66 35

50 295 174 127 103 78 66 53 49 55

50 289 158 130 97 93 64 69 43 57

100 303 194 122 109 72 65 50 36 49

100 306 179 132 91 78 58 61 45 50

The table seems consistent with Theorem 2, though the counts based on random
samples vary more than I had expected.

Theodore P. Hill has suggested that Theorem 2 would be a more realistic model if
the rates of growth varied over time. Theorem 3 below was motivated by this observa-
tion.

Theorem 3. limn→∞ Pr[D(ar1r2 · · · rn) = d] = log10(d + 1)− log10 d.

As with Theorem 2, a is selected at random from [1, 10) by any random process,
but now each ri is selected uniformly from some fixed interval [s, u) in [1, 10) and the
selections of ri are assumed to be independent. Table 5 gives some results, each based
on samples of size 1000 from [1, 10)× [1, 1.5).

The requirements of uniform selection in Theorems 2 and 3 can be substantially
relaxed, as will be explained later.
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Table 5.

expected # first digits −→ 301 176 125 97 79 67 58 51 46

value of n ↓ 1 2 3 4 5 6 7 8 9

10 321 172 126 99 71 43 61 48 59

10 332 178 116 71 82 63 57 46 55

20 306 181 104 90 94 69 65 38 53

20 315 162 141 98 80 50 55 45 54

50 306 176 120 95 76 77 56 44 50

50 311 163 132 99 74 69 53 52 47

100 316 190 116 89 78 65 47 51 48

100 308 168 114 108 73 69 54 49 57

PROOF OF THEOREM 1. We will use the function g(x) := log10 x mod 1, for x
in [1,∞). Here mod 1 means that we are taking the decimal or fractional portion of
log10 x . Thus g is a function from [1,∞) onto [0, 1), though we will sometimes restrict
it to [1, 10) where it is one-to-one. We actually prefer to identify the image set [0, 1)
with the circle of circumference 1 by using the wrapping function:

W (x) :=
1

2π
(cos 2πx, sin 2πx) or, if you prefer, W (x) :=

1

2π
e2π i x .

By laws of logarithms,

g(ar k) = (log10 a + k log10 r) mod 1 for all k. (4)

First we assume a = 1, so that g(r k) = k log10 r mod 1 for all k. Observe that D(x) =
d if and only if d · 10 j

≤ x < (d + 1) · 10 j for some integer j , so that D(x) = d if
and only if log10 d ≤ log10 x mod 1 < log10(d + 1). Hence

D(x) = d if and only if log10 d ≤ g(x) < log10(d + 1), (5)

and

D(r k) = d if and only if log10 d ≤ k log10 r mod 1 < log10(d + 1). (6)

Figure 2 shows a picture of the circle of circumference 1 and a picture of the regions
corresponding to where D = d for d = 1, 2, . . . , 9. Old-timers may be interested that
Raimi [18] included a picture similar to our second picture in Figure 2 and that he
discussed its relationship to a circular slide rule.

We need the following well-known fact.

Uniform Distribution Theorem. For any irrational x in [0, 1), the sequence
(kx mod 1) is uniformly distributed. That is, for any interval I in [0, 1), we have

lim
n→∞

1

n
#{k ≤ n : kx mod 1 is in I } = length(I ).
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Figure 2.

This result is false if x is rational, because then the sequence (kx mod 1) takes on
only finitely many values. Before we discuss and prove this theorem, we apply it to
x = log10 r , so we need log10 r to be irrational; but this is true by [17, Theorem 2.11]
since we’re assuming r is rational and 1 < r < 10. We conclude that for any integer
d , 1 ≤ d ≤ 9,

lim
n→∞

1

n
#{k ≤ n : log10 d ≤ k log10 r mod 1 < log10(d + 1)}

= log10(d + 1)− log10 d.

Equation (2) for a = 1 follows from this and the observation in (6). The proof works
even if a > 1, because the uniform distribution theorem remains true if kx mod 1 is re-
placed by (c+ kx)mod 1 for some constant c, since the sequence ((c+ kx)mod 1) is
just the sequence (kx mod 1) rotated a constant angle around the circle. This completes
the proof of Theorem 1.

As noted in Raimi [19], the conclusion

lim
n→∞

1

n
# {k ≤ n : D(F I B(k)) = d} = log10(d + 1)− log10 d,

for the Fibonacci sequence (FIB(k)), has been noted by D. Singmaster and others
since the 1960s. This is true because this sequence is asymptotic with the golden-mean
geometric sequence (((1+

√
5)/2)k).

The proof of the uniform distribution theorem is somewhat complicated, but the
result is reasonable and is what one would hope would be true. The theorem was
proved, independently, by P. Bohl, W. Sierpinski, and H. Weyl in 1909–1910. For
two proofs, see [17, Theorem 6.3]. One proof uses continued fractions; the other uses
Fourier series. An intricate proof, using only limits and epsilon-delta arguments, is
given in [16, Chapter 2, Theorem 8.7]. In [16, Section 5.9], the uniform distribution
theorem is discussed as an application of Birkhoff’s individual ergodic theorem. We
will give another, and more modern, proof.

First, we collect together some standard facts in the setting of the compact group
G = [0, 1); here 0 and 1 are identified. For a measure µ on G, its Fourier-Stieltjes
transform µ̂ is defined by µ̂(m) :=

∫
G χm dµ for integers m, where χm is defined by

χm(x) := exp(2π imx) for x ∈ G. A good reference is [14, Chapter I, §7.4, §7.12].
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I thank my friend Robert B. Burckel for pointing out how the use of this transform
simplifies our proofs.

Lemma 1. Given a sequence (µn) of probability measures on G = [0, 1) and a prob-
ability measure µ on G, statements (a)–(d) below are equivalent.

(a) µn → µ in the weak-∗ (or vague) topology, i.e., limn

∫
G f dµn =

∫
G f dµ for

all continuous functions on G.3

(b) If F ⊆ G is closed, then lim supn µn(F) ≤ µ(F).
(c) If V ⊆ G is open, then lim infn µn(V ) ≥ µ(V ).
(d) limn µ̂n(m) = µ̂(m) for all integers m.

Also, if (a)–(d) are true, we have:

(e) If µ({x}) = 0 for all x in [0, 1), then

lim
n
µn(I ) = µ(I ) for each interval I in G. (7)

Proof. The equivalence of (a)–(c) is an elementary fact that holds in all metric spaces;
see, for example, [25, Theorem 3.1.5].

We have (a) =⇒ (d) because each function χm is a continuous function on G. We
have (d) =⇒ (a) because the space of linear combinations of the functions χm is uni-
formly dense in the space of continuous functions on G, by an application of the Stone-
Weierstrass theorem.

For assertion (e), note that there exist a and b so that (a, b) ⊆ I ⊆ [a, b]. Then (7)
follows from (b) and (c) via the inequalities:

lim sup
n

µn(I ) ≤ lim sup
n

µn([a, b]) ≤ µ([a, b])

= µ((a, b)) ≤ lim inf
n

µn((a, b)) ≤ lim inf
n

µn(I ).

PROOF OF THE UNIFORM DISTRIBUTION THEOREM. Let Pn be the prob-
ability 1

n

∑n
k=1 δkx on G = [0, 1), where δkx is the point mass at kx mod 1. The con-

clusion of the theorem is equivalent to

lim
n

Pn(I ) = λ(I ) for each interval I in G,

where λ is Lebesgue measure on [0, 1). Since λ̂(0) = P̂n(0) = 1 and λ̂(m) = 0 for
m 6= 0, Lemma 1 shows that it suffices to confirm

lim
n

P̂n(m) = 0 for m 6= 0.

Since δ̂kx(m) = exp(−2π imkx), we need to prove that

lim
n

1

n

n∑
k=1

αk
= 0 for α := exp(−2π imx). (8)

But, since mx is not an integer, we have α 6= 1 and so this geometric sum is equal to

α
αn
− 1

α − 1
,

which is clearly bounded in n. Hence (8) holds, completing the proof.
3Since 0 and 1 are identified, continuity of f includes the requirement limx→1− f (x) = f (0).
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INDUCED MEASURES. If φ is a measurable function from a measurable space
(X,S) to a measurable space (Y,T ), then every measure ν on X induces a measure
ν ◦ φ−1 on Y defined by

ν ◦ φ−1(E) = ν(φ−1(E)) for measurable sets E ⊂ Y. (9)

Observe that ∫
Y

f (y)d(ν ◦ φ−1)(y) =
∫

X
f (φ(x))dν(x) (10)

for bounded measurable functions f on Y .

PROOF OF THEOREM 2. In this theorem, the r ’s are selected at random from a
fixed interval [s, u) in [1, 10). Let U be the uniform probability on [s, u), so that

U (I ) :=
length(I )

u − s
for each interval I ⊆ [s, u).

Also, the a’s are selected, independently of the r ’s, using any probability measure µ
on [1, 10). We again use the function g : [1, 10)→ [0, 1) given by g(r) = log10 r . We
have D(ar n) = d if and only if d · 10k

≤ ar n < (d + 1)10k for some k and hence if
and only if

log10 d ≤ g(a)+ ng(r) < log10(d + 1);

here addition is in the group [0, 1). Thus we have

Pr [D(ar n) = d] =
∫ 10

1

∫ 10

1
χId (g(a)+ ng(r))dµ(a)dU (r), (11)

where χId is the indicator function of the interval Id = [log10 d, log10(d + 1)). Our
goal is to show that the quantity in (11) converges to log10(d + 1)− log10 d = λ(Id).

Obviously dU (r) = h(r) dr for a bounded measurable function h on [1, 10), i.e.,∫ 10

1
f (r) dU (r) =

∫ 10

1
f (r)h(r) dr (12)

for bounded measurable functions f on [1, 10). We mention this here because we will
use only (12) in the proof, so that it will be easy to see how to generalize this result.
Let P and Q be the induced measures U ◦ g−1 and µ ◦ g−1 on [0, 1). Then from (11)
and (10), with X = [1, 10) and Y = [0, 1), we obtain

Pr [D(ar n) = d] =
∫ 1

0

∫ 1

0
χId (b + nx) d Q(b) d P(x).

For each n, let Pn be the induced measure P ◦ φ−1
n on [0, 1), where φn(x) = nx mod 1

for x in [0, 1). Then, using (10) again, with X = Y = [0, 1), we obtain

Pr [D(ar n) = d] =
∫ 1

0

∫ 1

0
χId (b + φn(x)) d P(x) d Q(b) (13)

=

∫ 1

0

∫ 1

0
χId (b + y) d Q(b) d Pn(y).
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This is exactly the integral with respect to the convolution Q ∗ Pn; see [14, Chapter I,
§7.10] or [10, (19.10)]. Hence

Pr [D(ar n) = d] =
∫ 1

0
χId d(Q ∗ Pn) = (Q ∗ Pn)(Id),

and we want to show limn(Q ∗ Pn)(Id) = λ(Id). As in the proof of the uniform distri-
bution theorem, it suffices to show

lim
n

Q̂ ∗ Pn(m) = 0 for m 6= 0.

Since Q̂ ∗ Pn(m) = Q̂(m)P̂n(m) for all m, it suffices to show

lim
n

P̂n(m) = 0 for m 6= 0.

Since χm(φn(x)) = exp(2π imφn(x)) = exp(2π imnx) = χmn(x), we have

P̂n(m) =
∫ 1

0
χm(x) d Pn(x) =

∫ 1

0
χm(φn(x)) d P(x) =

∫ 1

0
χmn(x) d P(x) = P̂(mn).

Using (12) and (10), it can be shown that d P = H dλ for a bounded measurable func-
tion H on [0, 1). In other words,∫ 1

0
f (x) d P(x) =

∫ 1

0
f (x)H(x) dx

for bounded measurable functions f on [0, 1). In fact, H(x) = loge(10) h(10x)10x .
Therefore, P̂ = Ĥ and, since H is integrable, limn→∞ Ĥ(n) = 0 by the Riemann-
Lebesgue lemma; see, e.g., [14, Chapter I, Theorem 2.8]. We conclude that for m 6= 0:

lim
n

P̂n(m) = lim
n

P̂(mn) = lim
n

Ĥ(mn) = 0,

as desired.

PROOF OF THEOREM 3. We use the following notation from the proof of Theo-
rem 2: g, U , µ, Id , P , and Q. This time, each ri is selected at random from [1, 10)
using U , and the a’s and ri ’s are selected independently. Now, all we need about U is

the probability U is not supported on a finite subset of [1, 10). (14)

We have D(ar1r2 · · · rn) = d if and only if

log10 d ≤ g(a)+ g(r1)+ g(r2)+ · · · + g(rn) < log10(d + 1).

Thus we have

Pr [D(ar1r2 · · · rn) = d]

=

∫ 10

1

∫ 10

1

∫ 10

1
· · ·

∫ 10

1
χId (g(a)+ g(r1)+ g(r2)+ · · · + g(rn))

dµ(a) dU (r1) dU (r2) · · · dU (rn), (15)
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and we need to show that the quantity in (15) converges to log10(d + 1)− log10 d . Our
tool will be Q ∗ Pn , where Pn is the convolution power Pn

= P ∗ P ∗ · · · ∗ P . In this
setting, (10) tells us that∫ 10

1
f (g(r)) dν(r) =

∫ 1

0
f (x) d(ν ◦ g−1)(x)

for measures ν on [1, 10) and for bounded measurable functions f on [0, 1). Using
this n + 1 times, the iterated integral in (15) becomes∫ 1

0

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
χId (x + x1 + x2 + · · · + xn) d Q(x) d P(x1) d P(x2) · · · d P(xn).

This is the integral with respect to the convolution Q ∗ Pn , so that

Pr [D(ar1r2 · · · rn) = d] =
∫ 1

0
χId d(Q ∗ Pn) = (Q ∗ Pn)(Id),

and our goal is reduced to showing that

lim
n→∞

(Q ∗ Pn)(Id) = log10(d + 1)− log10 d = λ(Id).

Assumption (14) implies that P = U ◦ g−1 is not supported on any finite subset of
[0, 1). As in the proof of Theorem 2, it suffices to prove

lim
n

P̂n(m) = 0 for all integers m 6= 0. (16)

This will be verified in the proof of the following lemma, which is an easy consequence
of Lemma 1.

Lemma 2. For a probability measure P on G = [0, 1), we have

Pn
→ λ in the weak-∗ (or vague) topology

provided that the support of P is not a subset of any coset of a finite subgroup of G.

Proof. As before, it suffices to verify (16). Since P̂n(m) = P̂(m)n for all positive inte-
gers n, it suffices to show that |P̂(m)| < 1 for m 6= 0. If |P̂(m)| = 1, then

∫
G χm d P =

eiθ for some real number θ . This implies that the support of P is a subset of A =
{x ∈ G : χm(x) = eiθ

}. Given a fixed x0 in A, it follows that A − x0 = χ
−1
m (1), which

is a closed proper subgroup of G since χm 6= 1. This violates the hypothesis regarding
the support of P , since all closed proper subgroups of G are finite.

NOTES FOR THE SPECIALIST. Since (14) is the only property of U used in the
proof of Theorem 3, Theorem 3 holds so long as the ri ’s are selected independently
at random using a probability on [1, 10) that is not supported on any finite subset
of [1, 10). In particular, Theorem 3 holds if the ri ’s are selected from [1, 10) using
Benford’s probability measure β where β([a, b)) = log10 b − log10 a for all [a, b) ⊆
[1, 10). However, in this case, P := β ◦ g−1 and all its convolution powers Pn are
equal to λ, so Lemma 2 is not needed.

The equivalence (a)⇐⇒ (d) in Lemma 1 holds for any compact abelian group G,
where assertion (d) becomes: limn µ̂n(χ) = µ̂(χ) for all characters of G.

August–September 2011] BENFORD’S LAW 581



Using essentially the same proof, Lemma 2 holds for any compact abelian group G,
provided the support of P is not a subset of any coset of a proper closed subgroup of G.
For general compact groups, Lemma 2 holds provided the support of P is not a subset
of any coset of a proper closed normal subgroup of G, but the proof is more compli-
cated than that of Lemma 2. The result goes back to Yukiyosi Kawada and Kiyosi Itô
(1940) and Karl Stromberg (1960) [24]. This generality is interesting, even for finite
groups, because this theorem implies that repeated selections based on a fixed random
process, such as shuffling cards, lead to a well-mixed selection, i.e., have the effect of
a uniform selection. In the case of shuffling cards, the underlying group is a large finite
nonabelian group of permutations. For much more about card shuffling, see [1].

Under very general assumptions, Peter Schatte [23, §5] shows that

lim
N→∞

1

N

N∑
n=1

Pr [D(ar1r2 · · · rn) = d] = log10(d + 1)− log10 d.

In particular, for each i , the ri ’s can be selected using different probabilities Ui . His
conclusion is weaker than ours, but his hypotheses are also weaker.

MORE REFERENCES. At this time, the website Benford Online Bibliography [3]
has a little over 600 entries regarding Benford’s law, mostly articles but some web-
site and video items as well. Here are further comments on some papers published
after Raimi’s fine summary [19]. In [11], Theodore P. Hill gives a formulation of the
significant-digit problem based on the natural assumption of base invariance, and he
proves a theorem about the probabilities of digits in different positions. He also notes,
in [12], that these probabilities are dependent. For example, the (unconditional) prob-
ability that the second digit is 2 is ≈ 0.109, whereas the conditional probability that
the second digit is 2, given that the first digit is 1, is ≈ 0.115. Other interesting math-
ematical treatments of Benford’s law appear in Raimi [20], Cohen and Katz [5], and
the new book by Rodney Nillsen [16]. For a survey of applications of Benford’s law
to the natural sciences, including observations from the fields of physics, astronomy,
geophysics, chemistry, and engineering, see [22].

SUGGESTED STUDY. For what sequences does Theorem 1 hold? That is, for what
sequences (ak) do the limits

lim
n→∞

1

n
#{k ≤ n : D(ak) = d} (17)

exist and, if they do, equal log10(d + 1)− log10 d for d = 1, 2, . . . , 9? It is shown in
[21] that the limit in (17) does not exist for the sequences (k N )∞k=1 for integers N ≥ 2.
However, an interesting subsequence converges to ( N

√
d + 1− N

√
d)/( N
√

10− 1). Per-
haps the problem with (k N )∞k=1 is that it diverges too slowly to infinity. Consider
any r > 1, that is not a power of 10, and any integer N ≥ 2. Experimental evidence
suggests that the limits in (17) exist for the sequence (ak) defined by a0 = r and
ak+1 = aN

k for k ≥ 1, and equal log10(d + 1)− log10 d , for d = 1, 2, . . . , 9. The case
r = N = 2 is interesting. But, we have no proofs.

ACKNOWLEDGMENTS. It is a pleasure to thank Stan Wagon, Richard Koch, Theodore P. Hill, Robert B.
Burckel, and John Clay for their help and interest in this project.

582 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118



REFERENCES

1. D. Bayer and P. Diaconis, Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2 (1992) 294–313.
http://dx.doi.org/10.1214/aoap/1177005705

2. F. Benford, The law of anomalous numbers, Proc. Amer. Philos. Soc. 78 (1938) 551–572.
3. A. Berger and T. P. Hill, Benford Online Bibliography, available at http://www.benfordonline.net.
4. , Benford’s law strikes back: No simple explanation in sight for mathematical gem, Math. Intel-

ligencer 33, no. 1 (2011) 85–91. http://dx.doi.org/10.1007/s00283-010-9182-3
5. D. I. A. Cohen and T. M. Katz, Prime numbers and the first digit phenomenon, J. Number Theory 18

(1984) 261–268. http://dx.doi.org/10.1016/0022-314X(84)90061-1
6. P. Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probab. 5 (1977)

72–81. http://dx.doi.org/10.1214/aop/1176995891
7. C. Durtschi, W. Hillison, and C. Pacini, The effective use of Benford’s law to assist in detecting fraud in

accounting data, J. Forensic Accounting 1524–5586 (2004) 17–34.
8. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, John Wiley, New York,

1966.
9. R. M. Fewster, A simple explanation of Benford’s Law, Amer. Statist. 63 (2009) 26–32. http://dx.

doi.org/10.1198/tast.2009.0005

10. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, vol. I, 2nd ed., Springer-Verlag, Berlin, 1979.
11. T. P. Hill, Base-invariance implies Benford’s law, Proc. Amer. Math. Soc. 123 (1995) 887–895.
12. , The significant-digit phenomenon, Amer. Math. Monthly 102 (1995) 322–327. http://dx.

doi.org/10.2307/2974952

13. , A statistical derivation of the significant-digit law, Statist. Sci. 10 (1995) 354–363.
14. Y. Katznelson, An Introduction to Harmonic Analysis, 3rd ed., Cambridge University Press, Cambridge,

2004.
15. M. Nigrini, A taxpayer compliance application of Benford’s law, J. Amer. Taxation Assoc. 18 (1996)

72–91.
16. R. Nillsen, Randomness and Recurrence in Dynamical Systems: A Real Analysis Approach, Carus Mono-

graph #31, Mathematical Association of America, Washington, DC, 2010.
17. I. Niven, Irrational Numbers, Carus Monograph #11, Mathematical Association of America, Rahway,

NJ, 1956.
18. R. A. Raimi, The peculiar distribution of first digits, Scientific American 221 (Dec. 1969) 109–120.

http://dx.doi.org/10.1038/scientificamerican1269-109

19. , The first digit problem, Amer. Math. Monthly 83 (1976) 521–538. http://dx.doi.org/10.
2307/2319349

20. , The first digit phenomenon again, Proc. Amer. Philos. Soc. 129 (1985) 211–219.
21. K. A. Ross, First digits of squares and cubes, Math. Mag. (to appear).
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