Cross Reference Up

Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Al-Rawashdeh, F (2017). Applying Benford's law into Jordanian insurance companies to identify earning's manipulations. Business and Economic Horizons 13(2), pp. 210-223. DOI:10.15208/beh.2017.16. View Complete Reference Online information Works that this work references Works that reference this work
Alipour, A and Alipour, S (2019). Application of Benford’s Law in Analyzing Geotechnical Data. Civil Engineering Infrastructures Journal 52(2), pp. 323 – 334. DOI:10.22059/ceij.2019.272005.1534. View Complete Reference Online information Works that this work references Works that reference this work
Allen, DP (1999). A new approach to the first digit phenomenon. The Toth-Maatian Review 14(3), pp. 6839-6847. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Alves, AM and Lyra, CS (2008). Manchas Solares y la Ley de Newcomb-Benford. . RELEA 6, pp. 21-31. DOI:10.37156/RELEA/2008.06.021. SPA View Complete Reference Online information Works that this work references Works that reference this work
Balado, F and Silvestre, GCM (2018). Towards Optimum Counterforensics of Multiple Significant Digits Using Majorisation-Minimisation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, 2018, pp. 2116-2120. DOI:10.1109/ICASSP.2018.8462378. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2018). Goodness-of-fit testing for the Newcomb-Benford law with application to the detection of customs fraud. Journal of Business & Economic Statistics 36(2), pp. 346-358. DOI:10.1080/07350015.2016.1172014. View Complete Reference Online information Works that this work references Works that reference this work
Barabesi, L, Cerioli, A and Perrotta, D (2021). Forum on Benford’s law and statistical methods for the detection of frauds. Statistical Methods & Applications 30, pp. 767–778. DOI:10.1007/s10260-021-00588-0. View Complete Reference Online information Works that this work references Works that reference this work
Barlow, JL and Bareiss, EH (1985). On Roundoff Error Distributions in Floating Point and Logarithmic Arithmetic. Computing 34(4), pp. 325-347. ISSN/ISBN:0010-485X. DOI:10.1007/BF02251833. View Complete Reference Online information Works that this work references Works that reference this work
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. View Complete Reference Online information Works that this work references Works that reference this work
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. View Complete Reference Online information Works that this work references Works that reference this work
Bera, A, Mishra, U, Roy, SS, Biswas, A, Sen, A and Sen, U (2018). Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better. Physics Letters A 382(25), pp. 1639–1644 . DOI:10.1016/j.physleta.2018.04.020. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2006). A characterisation of Newton maps. ANZIAM J. 48, pp. 211-223. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2007). Newton’s method obeys Benford’s law. American Mathematical Monthly 114 (7), pp. 588-601. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2010). Fundamental Flaws in Feller’s Classical Derivation of Benford’s Law. University of Alberta preprint; posted on math arXiv 14May 2010. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A, Hill, TP, Kaynar, B and Ridder, A (2011). Finite-state Markov Chains Obey Benford's Law. SIAM Journal of Matrix Analysis and Applications 32(3), pp. 665-684. DOI:10.1137/100789890. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A, Hill, TP and Morrison, KE (2008). Scale-Distortion Inequalities for Mantissas of Finite Data Sets. Journal of Theoretical Probability 21(1), pp. 97-117. ISSN/ISBN:0894-9840. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Xu, C (2018). Best Finite Approximations of Benford’s Law. Journal of Theoretical Probability. DOI:10.1007/s10959-018-0827-z. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Blondeau Da Silva, S (2018). Benford or not Benford: new results on digits beyond the first. Preprint arXiv:1805.01291v1 [stat.OT]; last accessed July 29, 2018. View Complete Reference Online information Works that this work references Works that reference this work
Blondeau Da Silva, S (2019). Benford or Not Benford: A Systematic But Not Always Well-Founded Use of an Elegant Law in Experimental Fields. Communications in Mathematics and Statistics, pp. 1-35. ISSN/ISBN:2194-6701. DOI:10.1007/s40304-018-00172-1. View Complete Reference Online information Works that this work references Works that reference this work
Blondeau da Silva, S (2019). BeyondBenford: An R Package to Determine Which of Benford’s or BDS’s Distributions is the Most Relevant. Preprint hal-02310013; also posted on arXiv:1910.06104 [physics.soc-ph]; last accessed October 21, 2019. View Complete Reference Online information Works that this work references Works that reference this work
Blondeau Da Silva, S (2020). Limits of Benford’s Law in Experimental Field. International Journal of Applied Mathematics 33(4), pp. 685-695. DOI:10.12732/ijam.v33i4.12. View Complete Reference Online information Works that this work references Works that reference this work
Bustoz, J, Feldstein, A, Goodman, R and Linnainmaa, S (1979). Improved Trailing Digits Estimates Applied to Optimal Computer Arithmetic. Journal of the Association for Computing Machinery 26(4), pp. 716-730. ISSN/ISBN:0004-5411. DOI:10.1145/322154.322162. View Complete Reference Online information Works that this work references Works that reference this work
Caldwell, CK (2008). Does Benford's law apply to prime numbers?. From: The Prime Pages (prime number research, records and resources) FAQ. View Complete Reference Online information Works that this work references Works that reference this work
Canessa, E (2003). Theory of analogous force on number sets. Physica A 328, pp. 44-52. DOI:10.1016/S0378-4371(03)00526-0. View Complete Reference Online information Works that this work references Works that reference this work
Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). Newcomb-Benford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106-115. DOI:10.1073/pnas.1806617115. View Complete Reference Online information Works that this work references Works that reference this work
Chaitin-Chatelin, F (1994). Le calcul sur ordinateur a precision finie. Theorie et etat de l’art. CERFACS REPORT TR/PA/94/05. FRE View Complete Reference No online information available Works that this work references Works that reference this work
Chaitin-Chatelin, F (1995). Le calcul qualitatif. Comment donner un sens a des resultats faux?. CERFACS REPORT TR/PA/95/10. FRE View Complete Reference No online information available Works that this work references Works that reference this work
Chaitin-Chatelin, F (1996). Is finite precision arithmetic useful for physics?. Journal of Universal Computer Science 2(5), pp. 380-395. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Chaitin-Chatelin, F and Frayssé, V (1996). Lectures on Finite Precision Computations. SIAM. View Complete Reference Online information Works that this work references Works that reference this work
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019. View Complete Reference Online information Works that this work references Works that reference this work
Cinko, M (2014). Testing distribution of BIST-100 returns by Benford law. Journal of Economics, Finance and Accounting – (JEFA) 1(3), pp.184–191. TUR View Complete Reference Online information Works that this work references Works that reference this work
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. View Complete Reference Online information Works that this work references Works that reference this work
Cuff, V , Lewis, A and Miller, SJ (2015). The Weibull distribution and Benford’s law. Involve Vol. 8 No. 5, pp. 859–874. DOI:10.2140/involve.2015.8.859. View Complete Reference Online information Works that this work references Works that reference this work
Del Acebo, E and Sbert, M (2005). Benford's Law for Natural and Synthetic Images. Proc. of the First Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, L. Neumann, M. Sbert, B. Gooch, and W. Purgathofer, Eds., Girona, Spain, May 2005, pp. 169–176. ISSN/ISBN:1816-0859. DOI:10.2312/COMPAESTH/COMPAESTH05/169-176. View Complete Reference Online information Works that this work references Works that reference this work
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. View Complete Reference Online information Works that this work references Works that reference this work
Diaconis, P (2002). G.H. Hardy and Probability ???. Bulletin of the London Mathematical Society 34(4), pp. 385-402. DOI:10.1112/S002460930200111X. View Complete Reference Online information Works that this work references Works that reference this work
Dorrestijn, J (2008). Graphing conformity of distributions to Benford’s Law for various bases. MSc thesis, Universiteit Utrecht, The Netherlands. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Drew, JH, Evans, DL, Glen, AG and Leemis, LM (2017). Products of Random Variables. In:Computational Probability: Algorithms and Applications in the Mathematical Sciences, Springer International Publishing, pp. 73-86. ISSN/ISBN:978-3-319-43323-3. DOI:10.1007/978-3-319-43323-3. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Drew, JH, Evans, DL, Glen, AG and Leemis, LM (2017). Other Applications. In: Computational Probability. International Series in Operations Research & Management Science, vol 246. Springer, Cham, pp. 301-321. ISSN/ISBN:978-3-319-43323-3. DOI:10.1007/978-3-319-43323-3_15. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. View Complete Reference Online information Works that this work references Works that reference this work
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358. View Complete Reference Online information Works that this work references Works that reference this work
Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 49-63. ISSN/ISBN:0236-5294. DOI:10.1007/s10474-012-0244-1. View Complete Reference Online information Works that this work references Works that reference this work
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. View Complete Reference Online information Works that this work references Works that reference this work
Fallico, D (2023). Searching Applications of Benford’s Law to Investigate Beam Jitter. Presentation for Teacher Research Associate (TRAC) Program at Fermilab. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Fang, G (2022). Investigating Hill’s question for some probability distributions. AIP Advances 12, 095004. DOI:10.1063/5.0100429. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Fang, G and Chen, Q (2019). Several common probability distributions obey Benford’s law. Physica A: Statistical Mechanics and its Applications, 123129 . DOI:10.1016/j.physa.2019.123129. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Goodman, R (1976). Convergence Estimates for Distribution of Trailing Digits. Journal of the Association for Computing Machinery 23(2), pp. 287-297. ISSN/ISBN:0004-5411. DOI:10.1145/321941.321948. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, P (1986). Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction. IMA Journal of Numerical Analysis 6, pp. 241-251. DOI:10.1093/imanum/6.2.241. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, PR (1996). Overflow and underflow in multiplication and division. Applied Numerical Mathematics 21(3), pp. 221-239. ISSN/ISBN:0168-9274. DOI:10.1016/0168-9274(96)00010-4. View Complete Reference Online information Works that this work references Works that reference this work
Fonseca, PMT da (2016). Digit analysis using Benford's Law: A Bayesian approach. Masters Thesis, ISEG - Instituto Superior de Economia e Gestão, Lisbon School of Economics & Management, Portugal. View Complete Reference Online information Works that this work references Works that reference this work
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541. View Complete Reference Online information Works that this work references Works that reference this work
Friar, JL, Goldman, T and Pérez-Mercader, J (2016). Ubiquity of Benford’s law and emergence of the reciprocal distribution. Physics Letters A 380(22), pp. 1895–1899. ISSN/ISBN:0375-9601. DOI:10.1016/j.physleta.2016.03.045. View Complete Reference Online information Works that this work references Works that reference this work
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE View Complete Reference Online information Works that this work references Works that reference this work
Gent, I and Walsh, T (2001). Benford’s Law. Preprint. APES Research Report, 2001. View Complete Reference Online information Works that this work references Works that reference this work
Giuliano, R and Janvresse, E (2010). A unifying probabilistic interpretation of Benford's Law. Uniform Distribution Theory 5(2), pp. 169-182. ISSN/ISBN:1336-913X. View Complete Reference Online information Works that this work references Works that reference this work
Göb, R (2007). Data Conformance Testing by Digital Analysis - A Critical Review and an Approach to More Appropriate Testing. Quality Engineering Volume 19(4), pp. 281-297. DOI:10.1080/08982110701633721. View Complete Reference Online information Works that this work references Works that reference this work
Goodman, RH, Feldstein, A and Bustoz, J (1985). Relative Error in Floating-Point Multiplication. Computing 35, pp. 127-139. ISSN/ISBN:1436-5057. DOI:10.1007/BF02260500. View Complete Reference Online information Works that this work references Works that reference this work
Hafner, EM (1979). Circular slide roulette. IEEE Communications Magazine 17(2), pp. 29-32. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hindls, R and Hronová, S (2015). Benford’s Law and Possibilities for Its Use in Governmental Statistics. Statistika 95( 2), pp. 54-64. View Complete Reference Online information Works that this work references Works that reference this work
Horton, J, Kumar, DK and Wood, A (2020). Detecting academic fraud using Benford law: The case of Professor James Hunton. Research Policy 49(8), 104084 . DOI:10.1016/j.respol.2020.104084. View Complete Reference Online information Works that this work references Works that reference this work
Hüngerbühler, N (2007). Benfords Gesetz über führende Ziffern: Wie die Mathematik Steuersündern das Fürchten lehrt. EDUCETH - Das Bildungsportal der ETH Zürich. GER View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. View Complete Reference Online information Works that this work references Works that reference this work
Iyengar, SS, Rajagopal, AK and Uppuluri, VRR (1983). String Patterns of Leading Digits. Applied Mathematics and Computation 12(4), pp. 321-337. ISSN/ISBN:0096-3003. DOI:10.1016/0096-3003(83)90045-0. View Complete Reference Online information Works that this work references Works that reference this work
Jamain, A (2001). Benford’s Law. Master Thesis. Imperial College of London and ENSIMAG. View Complete Reference Online information Works that this work references Works that reference this work
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60. View Complete Reference Online information Works that this work references Works that reference this work
Janvresse, É (2012). Quelques contributions aux probabilités eta la théorie ergodique. Document de synthèse présenté pour l’Habilitation à Diriger des Recherches, l’université de Rouen. FRE View Complete Reference Online information Works that this work references No Bibliography works reference this work
Janvresse, E and De la Rue, T (2003). La loi de Benford. Quadature no. 48, pp. 5-9. FRE View Complete Reference No online information available Works that this work references Works that reference this work
Janvresse, E and de la Rue, T (2004). From Uniform Distributions to Benford’s Law. Journal of Applied Probability 41(4), pp. 1203-1210. ISSN/ISBN:0021-9002. View Complete Reference Online information Works that this work references Works that reference this work
Janvresse, É and de la Rue, T (2009). Benford’s law. (Catalan. Catalan summary). Butl. Soc. Catalana Mat., 24(1):5{12, 2009. Translated by Frederic Utzet. DOI:10.2436/20.2002.01.18. CAT View Complete Reference Online information Works that this work references No Bibliography works reference this work
Janvresse, É and de la Rue, T (2012). Averaging along Uniform Random Integers. Uniform Distribution Theory 7(2), pp. 35–60. View Complete Reference Online information Works that this work references Works that reference this work
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. View Complete Reference Online information Works that this work references Works that reference this work
Jing, J (2013). Benford’s Law and Stick Decomposition. Undergraduate thesis, Williams College, Williamstown, Massachusetts . View Complete Reference Online information Works that this work references Works that reference this work
Johnson, GG and Weggenmann, J (2013). Exploratory Research Applying Benford’s Law to Selected Balances in the Financial Statements of State Governments. Academy of Accounting & Financial Studies Journal 17 (3), pp. 31-44. View Complete Reference Online information Works that this work references Works that reference this work
Johnstone, P and Petry, FE (1994). Design and Analysis of Nonbinary Radix Floating-Point Representations. Computers & Electrical Engineering 20(1), pp. 39-50. ISSN/ISBN:0045-7906. DOI:10.1016/0045-7906(94)90005-1. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Kak, SC (1983). Strings of first digits of powers of a number. Indian J. Pure Appl. Math. 14(7), pp. 896-907. View Complete Reference Online information Works that this work references Works that reference this work
Kontorovich, AV and Miller, SJ (2005). Benford's Law, Values of L-functions and the 3x+ 1 Problem. Acta Arithmetica 120(3), pp. 269-297. ISSN/ISBN:0065-1036. DOI:10.4064/aa120-3-4. View Complete Reference Online information Works that this work references Works that reference this work
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. View Complete Reference Online information Works that this work references Works that reference this work
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. View Complete Reference Online information Works that this work references Works that reference this work
Manack, C and Miller, SJ (2015). Leading digit laws on linear Lie groups. Research in Number Theory 1:22. DOI:10.1007/s40993-015-0024-4. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2012). Random number sequences and the first digit phenomenon. Electronic Journal of Probability, Vol 17, Article 86, pp. 1-17 . DOI:10.1214/EJP.v17-1900. View Complete Reference Online information Works that this work references Works that reference this work
Matula, VV and Kornerup, P (1980). Foundations of Finite Precision Rational Arithmetic. pp 85-111 in: Alefeld, G, Grigorieff, RD (eds.) Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Computing Supplementum 2, Springer, Wien-New York. View Complete Reference No online information available Works that this work references Works that reference this work
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Nigrini, MJ (2008). The Modulo 1 Central Limit Theorem and Benford's Law for Products. International Journal of Algebra 2(3), pp. 119 - 130. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Takloo-Bighash, R (2006). An invitation to modern number theory. Princeton University Press. ISSN/ISBN:978-0691120607. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Takloo-Bighash, R (2007). Introduction to Random Matrix Theory. In: An Invitation to Modern Number Theory, Princeton University Press. ISSN/ISBN:9780691120607. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. View Complete Reference Online information Works that this work references Works that reference this work
Mori, Y and Takashima, K (2016). On the distribution of the leading digit of an: a study via 𝜒2 statistics. Period. Math. Hungar. 73(2), 224-239. ISSN/ISBN:0031-5303. DOI:10.1007/s10998-016-0138-z. View Complete Reference Online information Works that this work references Works that reference this work
Nguyen, HT, Kreinovich, V and Longpré, L (2003). Dirty pages of logarithm tables, lifetime of the universe, and subjective (fuzzy) probabilities on finite and infinite intervals. The 12th IEEE International Conference on Fuzzy Systems. FUZZ’03. Fuzzy Systems 1, pp. 67-73. DOI:10.1109/FUZZ.2003.1209339. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Nguyen, HT, Kreinovich, V and Longpré, L (2004). Dirty Pages of Logarithm Tables, Lifetime of the Universe, and (Subjective) Probabilities on Finite and Innite Intervals. Reliable Computing 10(2), 83-106. DOI:10.1023/B:REOM.0000015848.19449.12. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, pp. 69-81. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. View Complete Reference Online information Works that this work references Works that reference this work
Oleksy, M (2010). Data Mining und Benford's Law als Controllinginstrumente. Band 45, Wismarer Schriften zu Management und Recht, Europäischer Hochschulverlag, Bremen. ISSN/ISBN:978-3867414-40. GER View Complete Reference Online information Works that this work references No Bibliography works reference this work
Ozawa, K (2019). Continuous Distributions on (0, ∞) Giving Benford’s Law Exactly. Preprint arXiv:1905.02031 [math.PR]; last accessed June 6, 2019. View Complete Reference Online information Works that this work references Works that reference this work
Pavlov, AI (1982). On the distribution of fractional parts and Benford’s law. Math. USSR Izvestija 19(1), 65-77. English translation of: Izv. Akad. Nauk SSSR Ser. Mat., 1981, 45(4), 760–774. DOI:10.1070/IM1982v019n01ABEH001411. View Complete Reference Online information Works that this work references Works that reference this work
Pocheau, A (2006). The significant digit law: a paradigm of statistical scale symmetries . European Physical Journal B 49(4), pp. 491-511. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2006-00084-2. View Complete Reference Online information Works that this work references Works that reference this work
Popescu, II (2002). On the Lavelette’s nonlinear Zipf’s law. Online pre-print; link is broken. Copy of article is available on request. View Complete Reference No online information available Works that this work references No Bibliography works reference this work
Posch, PN (2005). Ziffernanalyse in Theorie und Praxis. Testverfahren zur Fälschungsaufspürung mit Benfords Gesetz. Diploma thesis, Universität Bonn, Germany, 2003. Published by Shaker Verlag, Aachen. GER View Complete Reference No online information available Works that this work references Works that reference this work
Posch, PN (2010). Ziffernanalyse mit dem Newcomb-Benford Gesetz in Theorie und Praxis. VEW Verlag Europäische Wirtschaft: Munich 2nd edition. GER View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. View Complete Reference Online information Works that this work references Works that reference this work
Rajagopal, AK, Uppuluri, VRR, Scott, DS, Iyengar, SS and Yellayi, M (1984). New structural properties of strings generated by leading digits of 2N. Applied Mathematics and Computation 14(3), pp. 221-244. DOI:10.1016/0096-3003(84)90023-7. View Complete Reference Online information Works that this work references Works that reference this work
Ravikumar, B (2008). The Benford-Newcomb Distribution and Unambiguous Context-Free Languages. International Journal of Foundations of Computer Science 19(3), pp. 717-727. ISSN/ISBN:0129-0541. DOI:10.1142/S0129054108005905. View Complete Reference Online information Works that this work references Works that reference this work
Ravikumar, B (2009). A simple multiplication game and its analysis. Accepted for publication in the International Journal of Combinatorial Number Theory. View Complete Reference Online information Works that this work references Works that reference this work
Sambridge, M, Tkalčić, H and Arroucau, P (2011). Benford's Law of First Digits: From Mathematical Curiosity to Change Detector. Asia Pacific Mathematics Newsletter 1(4), October 2011, 1-6. ISSN/ISBN:2010-3484. View Complete Reference Online information Works that this work references Works that reference this work
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830. View Complete Reference Online information Works that this work references Works that reference this work
Schäfer, C, Schräpler, J-P and Müller, KR (2004). Identification, Characteristics and Impact of Faked and Fraudulent Interviews in Surveys. Proceedings of European Conference on Quality and Methodology in Official Statistics. View Complete Reference Online information Works that this work references Works that reference this work
Schäfer, C, Schräpler, J-P, Müller, KR and Wagner GG (2004). Automatic Identification of Faked and Fraudulent Interviews in Surveys by Two Different Methods. Discussion paper 441, DIW Berlin (German Institute for Economic Research). ISSN/ISBN:1619-4535. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1981). On random variables with logarithmic mantissa distribution relative to several bases. Elektronische Informationsverarbeitung und Kybernetik 17(4/6), 293-295. ISSN/ISBN:0013-5712. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1986). On the Asymptotic Logarithmic Distribution of the Floating-Point Mantissas of Sums. Math. Nachr. 127, 7-20. ISSN/ISBN:0025-584X. DOI:10.1002/mana.19861250102. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1998). On Benford's law to variable base. Statistics & Probability Letters 37(4): 391-397. ISSN/ISBN:0167-7152. DOI:10.1016/S0167-7152(97)00142-9. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (2001). Briefe an die Herausgeber. Mitteilungen der Deutschen Mathematiker Vereinigung, 2/2001, pp 6-7. View Complete Reference No online information available Works that this work references No Bibliography works reference this work
Scheidt, JK and Schelin, CW (1987). Distributions of floating point numbers. Computing 38(4), 315-324. ISSN/ISBN:0010-485X. DOI:10.1007/BF02278709. View Complete Reference Online information Works that this work references Works that reference this work
Schräpler, J-P (2011). Benford's Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 231(5-6). DOI:10.1515/jbnst-2011-5-609. View Complete Reference Online information Works that this work references Works that reference this work
Schürger, K (2008). Extensions of Black-Scholes processes and Benford's law. Stochastic Processes and their Applications 118(7), 1219-1243. ISSN/ISBN:0304-4149. DOI:10.1016/j.spa.2007.07.017. View Complete Reference Online information Works that this work references Works that reference this work
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. View Complete Reference Online information Works that this work references Works that reference this work
Sharpe, MJ (2006). Limit Laws and Mantissa Distributions. Probability and Mathematical Statistics 26(1), 175-185. View Complete Reference Online information Works that this work references Works that reference this work
Stoschek, EP and Schönfeld, D (2002). Benford's Law - Places of interest near Benford's Law. Module 45 of: Workshop on Design of Algorithms. GER View Complete Reference No online information available Works that this work references No Bibliography works reference this work
Tichy, RF (1987). Statistische Resultate über computergerechte Darstellungen von Zahlen. Anzeiger der Österreichischen Akademie der Wissenschaften. Mathematisch- Naturwissenschaftliche Klasse 124, pp.1-8. GER View Complete Reference No online information available Works that this work references Works that reference this work
Toledo, PA, Riquelme, SR and Campos, JA (2015). Earthquake source parameters that display the first digit phenomenon. Nonlin. Processes Geophys., 22(5), pp. 625–632. DOI:10.5194/npg-22-625-2015. View Complete Reference Online information Works that this work references Works that reference this work
Turner, PR (1987). The distribution of l.s.d. and its implications for computer design. The Mathematical Gazette 71 (March), 26-31. View Complete Reference Online information Works that this work references Works that reference this work
Vardi, I (1999). Premiers chiffres significatifs et nombres algébriques. [Leading digits and algebraic numbers.]. Comptes rendus de l’Academie des sciences, Serie I 328 (9), 749-754. ISSN/ISBN:0764-4442. DOI:10.1016/S0764-4442(99)80265-1. FRE View Complete Reference Online information Works that this work references Works that reference this work
Volcic, A (1996). The First Digit Problem and Scale-Invariance. In: P. Marcellini, G. Talenti and E. Vesentini (eds), Partial differential equations and applications: collected papers in honor of Carlo Pucci. Marcel Dekker, pp. 329-340 . View Complete Reference Online information Works that this work references Works that reference this work
Volcic, A (2020). Uniform distribution, Benford’s law and scale-invariance. Bollettino dell'Unione Matematica Italiana. DOI:10.1007/s40574-020-00245-6. View Complete Reference Online information Works that this work references Works that reference this work
Vovor-Dassu, KC (2021). Tests d'adéquation à la loi de Newcomb-Benford comme outils de détection de fraudes. PhD Thesis L’Universite de Montpellier. DOI:10.13140/RG.2.2.12559.25764. FRE View Complete Reference Online information Works that this work references No Bibliography works reference this work
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. View Complete Reference Online information Works that this work references Works that reference this work
Weisstein, EW (2009). Benford's Law. MathWorld (A Wolfram Web Resource). View Complete Reference Online information Works that this work references Works that reference this work