Berger, A (2015). Most linear flows on ℝ^d are Benford
. Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016.





Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 2360. ISSN/ISBN:9783662441398. DOI:10.1007/9783662441404_2.





Berger, A and Eshun, G (2016). A characterization of Benford's law in discretetime linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432469. ISSN/ISBN:10407294. DOI:10.1007/s108840149393y.





Berger, A and Evans, SN (2013). A Limit Theorem for Occupation Measures of Lévy Processes in Compact Groups. Stochastics and Dynamics 13(1), p. 1250008. DOI:10.1142/S0219493712500086.





Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1126. DOI:10.1214/11PS175.





Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.





Gauvrit, N and Delahaye, JP (2009). Scatter and regularity imply Benford's Law ... and more. Preprint arXiv: 0910.1359 [math.PR]; last accessed July 18, 2018
.





Gauvrit, N and Delahaye, JP (2011). Scatter and Regularity Implies Benford's Law... and More. in H. Zenil (Ed.) Randomness Through Complexity, Singapore, World Scientific, 5369. ISSN/ISBN:139789814327749.





Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284.





Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:9780691147611.




