This work is cited by the following items of the Benford Online Bibliography:
Alipour, A and Alipour, S (2019). Application of Benford’s Law in Analyzing Geotechnical Data. Civil Engineering Infrastructures Journal 52(2), pp. 323 – 334. DOI:10.22059/ceij.2019.272005.1534. | ||||
Arshadi, L and Jahangir, AH (2014). Benford's law behavior of Internet traffic. Journal of Network and Computer Applications, Volume 40, April 2014, pp. 194–205. ISSN/ISBN:1084-8045. DOI:10.1016/j.jnca.2013.09.007. | ||||
Ausloos, M, Cerqueti, R and Mir, TA (2017). Data science for assessing possible tax income manipulation: The case of Italy. Chaos, Solitons and Fractals 104, pp. 238–256. DOI:10.1016/j.chaos.2017.08.012. | ||||
Ausloos, M, Herteliu, C and Ileanu, B (2015). Breakdown of Benford’s law for birth data. Physica A: Statistical Mechanics and its Applications Volume 419, pp. 736–745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041. | ||||
Baumeister, J and Macedo, TG (2011). Von den Zufallszahlen und ihrem Gebrauch. Stand: 21, November 2011. GER | ||||
Beiglou, PHB, Gibbs, C, Rivers, L, Adhikari, U and Mitchell, J (2017). Applicability of Benford’s Law to Compliance Assessment of Self-Reported Wastewater Treatment Plant Discharge Data. Journal of Environmental Assessment Policy and Management 19(04). DOI:10.1142/S146433321750017X. | ||||
Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. | ||||
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. | ||||
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Bhole, G, Shukla, A and Mahesh, TS (2014). Benford distributions in NMR. Preprint arXiv:1406.7077 [physics.data-an]; last accessed June 7, 2018. | ||||
Bhole, G, Shukla, A and Mahesh, TS (2015). Benford analysis: A useful paradigm for spectroscopic analysis. Chemical Physics Letters 639, pp. 36–40. DOI:10.1016/j.cplett.2015.08.061. | ||||
Biau, D. (2015). The first-digit frequencies in data of turbulent flows. Physica A: Statistical Mechanics and its Applications Volume 440, pp. 147-154. DOI:10.1016/j.physa.2015.08.016. | ||||
Bormashenko, E, Shulzinger, E, Whyman, G and Bormashenko, Y (2016). Benford’s law, its applicability and breakdown in the IR spectra of polymers. Physica A 444, pp. 524–529. DOI:10.1016/j.physa.2015.10.090. | ||||
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019. | ||||
Clippe, P and Ausloos, M (2012). Benford's law and Theil transform of financial data. Physica A: Statistical Mechanics and its Applications 391(24), pp. 6556–6567. | ||||
Courtland, R (2010). Curious mathematical law is rife in nature. Issue 2782, New Scientist, 14 October. | ||||
Dahlstrom, KL and Clegg, CP (2015). The DNA of Scripture. Westbow Press: Bloomington, IN. ISSN/ISBN:978-1-4908-7600-9. | ||||
Dantuluri, A and Desai, S (2018). Do tau lepton branching fractions obey Benford's law?. Physica A: Statistical Mechanics and its Applications 506, pp. 919-928. DOI:10.1016/j.physa.2018.05.013. | ||||
de Macedo, IAS and de Figueiredo, JJS (2018). Using Benford’s law on the seismic reflectivity analysis. Interpretation 6(3), pp. T689-T697. DOI:10.1190/int-2017-0201.1. | ||||
de Macedo, IAX (2019). On the well-to-seismic-tie analysis: effects of the borehole geometry and assumptions on wavelet estimation . Ph.d Thesis, Federal University of Pará Institute of Geosciences Geophysics Graduate Program. | ||||
DeHaan, M (2011). The surprising “Benford’s law” of leading digits. Posted on Decoding Science website; last updated November 12, 2019; last accessed December 9, 2019. | ||||
Diaz, J, Gallart, J and Ruiz, M (2014). On the Ability of the Benford’s Law to Detect Earthquakes and Discriminate Seismic Signals. Seismological Research Letters 86(1), pp. 192-201. DOI:10.1785/0220140131. | ||||
Eliazar, II (2013). Benford's Law: A Poisson Perspective. Physica A 392(16) pp. 3360–3373. DOI:10.1016/j.physa.2013.03.057. | ||||
Friar, JL, Goldman, T and Pérez-Mercader, J (2016). Ubiquity of Benford’s law and emergence of the reciprocal distribution. Physics Letters A 380(22), pp. 1895–1899. ISSN/ISBN:0375-9601. DOI:10.1016/j.physleta.2016.03.045. | ||||
García-Sosa, AT (2019). Benford's law in medicinal chemistry: Implications for drug design. Future Medicinal Chemistry 11(17), pp. 2247-2253. DOI:10.4155/fmc-2019-0006. | ||||
Geyer, A and Martě, J (2012). Applying Benford’s law to volcanology. Geology 40(4), pp. 327-330. DOI:10.1130/G32787.1 . | ||||
Goh, C (2020). Applying visual analytics to fraud detection using Benford's law. Journal of Corporate Accounting & Finance, pp. 1-7. DOI:10.1002/jcaf.22440. | ||||
Gramm, R, Yost, J, Su, Q and Grobe, R (2017). Applications of the first digit law to measure correlations. Phys. Rev. E 95, 042136. DOI:10.1103/PhysRevE.95.042136. | ||||
Hürlimann, W (2015). On the uniform random upper bound family of first significant digit distributions. Journal of Informetrics, Volume 9, Issue 2, pp. 349–358. DOI:10.1016/j.joi.2015.02.007. | ||||
Hürlimann, W (2015). Benford's Law in Scientific Research. International Journal of Scientific & Engineering Research, Volume 6, Issue 7, pp. 143-148. ISSN/ISBN:2229-5518. | ||||
Iorliam, A (2019). Combination of Natural Laws (Benford’s Law and Zipf’s Law) for Fake News Detection. In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham. DOI:10.1007/978-3-030-15210-9_3. | ||||
Joannes-Boyau, R, Bodin, T, Scheffers, A, Sambridge, M and May, SM (2015). Using Benford’s law to investigate Natural Hazard dataset homogeneity. Nature -Scientific Reports 5:12046, pp. 1-8 . DOI:10.1038/srep12046. | ||||
Kopczewski, T and Okhrimenko, I (2019). Playing with Benford’s Law. E-print posted on http://www.nbp.pl/badania/seminaria/8ii2019.pdf; last accessed June 6, 2019. | ||||
Kossovsky, AE (2012). Statistician's New Role as a Detective - Testing Data for Fraud. Ciencias Económicas 30(2), pp. 179-200 . ISSN/ISBN:0252-9521. | ||||
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. | ||||
Kreuzer, M, Jordan, D, Antkowiak, B, Drexler, B, Kochs, EF and Schneider, G (2014). Brain electrical activity obeys Benford's law. Anesth. Analg. 118(1), pp. 183-91. DOI:10.1213/ANE.0000000000000015. | ||||
Li, Q and Fu, Z (2016). Quantifying non-stationarity effects on organization of atmospheric turbulent eddy motion by Benford’s law. Commun Nonlinear Sci Numer Simulat 33, pp. 91–98. DOI:10.1016/j.cnsns.2015.09.006. | ||||
Li, Q, Fu, Z and Yuan, N (2015). Beyond Benford's Law: Distinguishing Noise from Chaos. PLoS ONE, 10, e0129161. DOI:10.1371/journal.pone.0129161. | ||||
Madahali, L and Hall, M (2020). Application of the Benford’s law to Social bots and Information Operations activities. International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, pp. 1-8. DOI:10.1109/CyberSA49311.2020.9139709. | ||||
Mir, TA (2011). Law of the leading digits and the ideological struggle for numbers. physics arXiv:1104.3948. DOI:10.1016/j.physa.2011.09.001. | ||||
Mir, TA (2012). The law of the leading digits and the world religions. Physica A: Statistical Mechanics and its Applications, 391 (2012), pp. 792-798. DOI:10.1016/j.physa.2011.09.001. | ||||
Mir, TA (2014). The Benford law behavior of the religious activity data. Physica A 408, pp. 1-9. DOI:10.1016/j.physa.2014.03.074. | ||||
Mir, TA (2016). Citations to articles citing Benford's law: a Benford analysis. arXiv:1602.01205; posted Feb 3, 2016. | ||||
Mir, TA (2016). The leading digit distribution of the worldwide illicit financial flows. Quality & Quantity vol. 50, p. 271-281. DOI:10.1007/s11135-014-0147-z. | ||||
Mir, TA, Ausloos, M and Cerqueti, R (2014). Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions. Eur. Phys. J. B (2014) 87: 261. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2014-50525-2. | ||||
Özkundakci, D and Pingram, MA (2019). Nature favours “one” as the leading digit in phytoplankton abundance data. Limnologica 78, p. 125707 . DOI:10.1016/j.limno.2019.125707. | ||||
Rane, AD, Mishra, U, Biswas, A, De, AS and Sen, U (2014). Benford's law gives better scale exponents in phase transitions of quantum XY models. Phys. Rev. E 90(2), p. 022144 (previously available from http://arxiv.org/abs/1405.2744). DOI:10.1103/PhysRevE.90.022144. | ||||
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571. | ||||
Sambridge, M, Tkalčić, H and Arroucau, P (2011). Benford's Law of First Digits: From Mathematical Curiosity to Change Detector. Asia Pacific Mathematics Newsletter 1(4), October 2011, 1-6. ISSN/ISBN:2010-3484. | ||||
Seenivasan, P, Easwaran, S, Sridhar, S and Sinha, S (2016). Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models. Frontiers in Physiology 6, p. 390. DOI:10.3389/fphys.2015.00390. | ||||
Sen, A and Sen, U (2011). Benford's law detects quantum phase transitions similarly as earthquakes. EPL (Europhysics Letters) 95(5), 50008, 1-6. DOI:10.1209/0295-5075/95/50008. | ||||
Sethi, K, Kumar, R, Prajapati, N and Bera, P (2020). A Lightweight Intrusion Detection System using Benford's Law and Network Flow Size Difference. Proceedings of 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). DOI:10.1109/COMSNETS48256.2020.9027422. | ||||
Shulzinger, E, Legchenkova, I and Bormashenko, E (2018). Co-occurrence of the Benford-like and Zipf Laws Arising from the Texts Representing Human and Artificial Languages. Preprint arXiv:1803.03667 [cs.CL]; last accessed April 6, 2019. | ||||
Sottili, G, Palladino, DM, Giaccio, B and Messina, P (2012). Benford's Law in Time Series Analysis of Seismic Clusters. Mathematical Geosciences Volume 44, Number 5 (2012), pp. 619-634. DOI:10.1007/s11004-012-9398-1. | ||||
Toledo, PA, Riquelme, SR and Campos, JA (2015). Earthquake source parameters that display the first digit phenomenon. Nonlin. Processes Geophys., 22(5), pp. 625–632. DOI:10.5194/npg-22-625-2015. | ||||
Verkade, T (2015). Wat het cijfer 1 allemaal over ons prijsgeeft. Posted on De Correspondent June 16, 2015; last accessed March 24, 2016. DUT | ||||
Whyman, G, Ohtori, N, Shulzinger, E and Bormashenko, E (2016). Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?. Physica A: Statistical Mechanics and its Applications Volume 461, pp. 595-601. DOI:10.1016/j.physa.2016.06.054. | ||||
Whyman, G, Shulzinger, E and Bormashenko, E (2016). Intuitive considerations clarifying the origin and applicability of the Benford law. Results in Physics Volume 6, pp. 3-6 . DOI:10.1016/j.rinp.2015.11.010. | ||||
Wojcik, MR (2013). Notes on scale-invariance and base-invariance for Benford's Law. arXiv:1307.3620 [math.PR]. | ||||
Wojcik, MR (2014). A characterization of Benford’s law through generalized scale-invariance. Mathematical Social Sciences, Volume 71, September 2014, pp. 1–5. DOI:10.1016/j.mathsocsci.2014.03.006. | ||||
Yang, D (2016). Characterization of noise in airborne transient electromagnetic data using Benford's law. SEG Technical Program Expanded Abstracts 2016, pp. 1043-1047. ISSN/ISBN:1949-4645. DOI:10.1190/segam2016-13972000.1. | ||||
Yang, L and Fu, Z (2017). Out-phased decadal precipitation regime shift in China and the United States. Theor Appl Climatol (2017) 130, pp. 535–544. DOI:10.1007/s00704-016-1907-6. |