This work cites the following items of the Benford Online Bibliography:
Abrantes-Metz, RM, Villas-Boas, SB and Judge, G (2011). Tracking the Libor rate. Applied Economics Letters 18(10), pp. 893-899. ISSN/ISBN:1466-4291. DOI:10.1080/13504851.2010.515197. | ||||
Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738. | ||||
Aldous, D and Phan, T (2010). When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT. The American Statistician 64(3), pp. 221–227. ISSN/ISBN:0003-1305. DOI:10.1198/tast.2010.09098. | ||||
Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. | ||||
Barlow, JL and Bareiss, EH (1985). On Roundoff Error Distributions in Floating Point and Logarithmic Arithmetic. Computing 34(4), pp. 325-347. ISSN/ISBN:0010-485X. DOI:10.1007/BF02251833. | ||||
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berger, A (2005). Benford’s Law in power-like dynamical systems. Stochastics and Dynamics 5, pp. 587-607. ISSN/ISBN:0219-4937. DOI:10.1142/S0219493705001602. | ||||
Berger, A (2005). Multi-dimensional dynamical systems and Benford's law. Discrete and Continuous Dynamical Systems 13(1), pp. 219-237. ISSN/ISBN:1078-0947. DOI:10.3934/dcds.2005.13.219. | ||||
Berger, A (2010). Large spread does not imply Benford's Law. Technical Report, Dept. of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada. | ||||
Berger, A (2011). Some dynamical properties of Benford sequences. Journal of Difference Equations and Applications 17(2), pp. 137-159. DOI:10.1080/10236198.2010.549012. | ||||
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5. | ||||
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. | ||||
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. | ||||
Berger, A and Evans, SN (2013). A Limit Theorem for Occupation Measures of Lévy Processes in Compact Groups. Stochastics and Dynamics 13(1), p. 1250008. DOI:10.1142/S0219493712500086. | ||||
Berger, A and Hill, TP (2007). Newton’s method obeys Benford’s law. American Mathematical Monthly 114 (7), pp. 588-601. ISSN/ISBN:0002-9890. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A, Hill, TP, Kaynar, B and Ridder, A (2011). Finite-state Markov Chains Obey Benford's Law. SIAM Journal of Matrix Analysis and Applications 32(3), pp. 665-684. DOI:10.1137/100789890. | ||||
Berger, A, Hill, TP and Morrison, KE (2008). Scale-Distortion Inequalities for Mantissas of Finite Data Sets. Journal of Theoretical Probability 21(1), pp. 97-117. ISSN/ISBN:0894-9840. | ||||
Berton, L (1995). He’s Got Their Number: Scholar Uses Math to Foil Financial Fraud. The Wall Street Journal, p. B1, July 10. | ||||
Breunig, C and Goerres, A (2011). Searching for Electoral Irregularities in an Established Democracy: Applying Benford’s Law Tests to Bundestag Elections in Unified Germany. Electoral Studies 30(3) September 2011, pp. 534-545. | ||||
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63. | ||||
Bumby, R and Ellentuck, E (1969). Finitely additive measures and the first digit problem. Fundamenta Mathematicae 65, pp. 33-42. ISSN/ISBN:0016-2736. | ||||
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. | ||||
Buyse, M, George, SL, Evans, S, Geller, NL, Edler, L and Hutton, J (1999). The Role of Biostatistics in the Prevention, Detection and Treatment of Fraud in Clinical Trials. Statistics in Medicine 18 (24), pp. 3435-3451. ISSN/ISBN:0277-6715. DOI:10.1002/(SICI)1097-0258(19991230)18:24<3435::AID-SIM365>3.0.CO;2-O. | ||||
Cantu, F and Saiegh, SM (2011). Fraudulent Democracy? An Analysis of Argentina’s Infamous Decade Using Supervised Machine Learning. Political Analysis 19 (4), pp. 409-433. DOI:10.1093/pan/mpr033. | ||||
Chou, MC, Kong, Q, Teo, CP, Wang, Z and Zheng, H (2009). Benford's Law and Number Selection in Fixed-Odds Numbers Game. Journal of Gambling Studies 25(4), pp. 503-521. DOI:10.1007/s10899-009-9145-9. | ||||
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. | ||||
Costas, E, López-Rodas, V, Toro, FJ and Flores-Moya, A (2008). The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford's law. Aquatic Botany 89(3), pp. 341-343. DOI:10.1016/j.aquabot.2008.03.011. | ||||
Cournane, S, Sheehy, N and Cooke, J (2014). The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology. Physica Medica 30(4), pp. 413–418. DOI:10.1016/j.ejmp.2013.11.004. | ||||
Deckert, J, Myagkov, M and Ordeshook, PC (2011). Benford's Law and the Detection of Election Fraud. Political Analysis 19(3), pp. 245-268. DOI:10.1093/pan/mpr014. | ||||
Del Acebo, E and Sbert, M (2005). Benford's Law for Natural and Synthetic Images. Proc. of the First Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, L. Neumann, M. Sbert, B. Gooch, and W. Purgathofer, Eds., Girona, Spain, May 2005, pp. 169–176. ISSN/ISBN:1816-0859. DOI:10.2312/COMPAESTH/COMPAESTH05/169-176. | ||||
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. | ||||
Diaconis, P and Freedman, D (1979). On Rounding Percentages. Journal of the American Statistical Association 74(366), pp. 359-364. ISSN/ISBN:0162-1459. | ||||
Dickinson, JR (2002). A universal mathematical law criterion for algorithmic validity. Developments in Business Simulation and Experiential Learning 29, pp. 26-33. | ||||
Docampo, S, del Mar Trigo, M, Aira, M, Cabezudo, B and Flores-Moya, A (2009). Benford’s law applied to aerobiological data and its potential as a quality control tool . Aerobiologia 25, pp. 275-283 . ISSN/ISBN:0393-5965. DOI:10.1007/s10453-009-9132-8. | ||||
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. | ||||
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. | ||||
Feldstein, A and Turner, P (1986). Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction. IMA Journal of Numerical Analysis 6, pp. 241-251. DOI:10.1093/imanum/6.2.241. | ||||
Feller, W (1971). An Introduction to Probability Theory and Its Applications. 2nd ed., J. Wiley (see p 63, vol 2). | ||||
Flehinger, BJ (1966). On the Probability that a Random Integer has Initial Digit A. American Mathematical Monthly 73(10), pp. 1056-1061. ISSN/ISBN:0002-9890. DOI:10.2307/2314636. | ||||
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. DOI:10.1371/journal.pone.0036624. | ||||
Fu, D, Shi, YQ and Su, W (2007). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, Volume 6505, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, California, January 28 - February 1, 2007, pp. 65051L-65051L-11. DOI:10.1117/12.704723. | ||||
Gambarara, F and Nagy, O (2004). Benford Distribution in Science. ETH Zürich website; last accessed July 18, 2018. | ||||
Gelman, A and Nolan, D (2002). Some Statistical Sampling and Data Collection Activities. Mathematics Teacher 95(9), pp. 688-693. | ||||
Goldoni, E, Savazzi, P and Gamba, P (2012). A novel source coding technique for wireless sensor networks based on Benford's law . 2012 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), 26-28 Sept. 2012, pp 32-34 . ISSN/ISBN:978-1-4673-2739-8 . | ||||
Goodman, WM (2013). Reality Checks for a Distributional Assumption: The Case of “Benford’s Law”. JSM Proceedings. Alexandria, VA: American Statistical Association (2013), pp. 2789-2803. (Also published on the Statistical Literacy website, at URL: http://www.statlit.org/pdf/2013-Goodman-ASA.pdf) . | ||||
Goudsmit, SA and Furry, WH (1944). Significant figures of numbers in statistical tables. Nature 154(3921), pp. 800-801. ISSN/ISBN:0028-0836. DOI:10.1038/154800a0. | ||||
Grekos, G (2005). On various definitions of density. Tatra Mountains Mathematical Publications 31, pp. 17-27. ISSN/ISBN:1210-3195. | ||||
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. | ||||
Hein, J, Zobrist, R, Konrad, C and Schuepfer, G (2012). Scientific fraud in 20 falsified anesthesia papers : detection using financial auditing methods. Der Anaesthesist 61(6), pp. 543-9. DOI:10.1007/s00101-012-2029-x. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (1999). The difficulty of faking data. Chance 12(3), pp. 27-31. DOI:10.1080/09332480.1999.10542154. | ||||
Hill, TP and Schürger, K (2005). Regularity of digits and significant digits of random variables. Journal of Stochastic Processes and their Applications 115(10), pp. 1723-1743. ISSN/ISBN:0304-4149. DOI:10.1016/j.spa.2005.05.003. | ||||
Horgan, J (2011). An introduction with computer science applications. Section 9.4 of Probability with R pp. 142-144, John Wiley & Sons . ISSN/ISBN:978-0-470-28073-7. | ||||
Horn, B, Kreuzer, M, Kochs, EF and Schneider, G (2006). Different states of anesthesia can be detected by Benford's Law. Journal of Neurosurgical Anesthesiology 18(4), pp. 328-329. | ||||
Idrovo, AJ, Bojórquez-Chapela, I, Fernández-Niño, JA and Moreno-Montoya, J (2011). Performance of public health surveillance systems during the influenza A(H1N1) pandemic in the Americas: testing a new method based on Benford's Law. Epidemiol. Infect. 139(12), pp. 1827-34. ISSN/ISBN:1469-4409. DOI:10.1017/S095026881100015X. | ||||
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. | ||||
Jolion, JM (2001). Images and Benford's Law. Journal of Mathematical Imaging and Vision 14(1), pp. 73-81. ISSN/ISBN:0924-9907. DOI:10.1023/A:1008363415314. | ||||
Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV). ISSN/ISBN:978-3-540-18814-8. DOI:10.1007/BFb0078471. | ||||
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. | ||||
Kontorovich, AV and Miller, SJ (2005). Benford's Law, Values of L-functions and the 3x+ 1 Problem. Acta Arithmetica 120(3), pp. 269-297. ISSN/ISBN:0065-1036. DOI:10.4064/aa120-3-4. | ||||
Kreuzer, M, Jordan, D, Antkowiak, B, Drexler, B, Kochs, EF and Schneider, G (2014). Brain electrical activity obeys Benford's law. Anesth. Analg. 118(1), pp. 183-91. DOI:10.1213/ANE.0000000000000015. | ||||
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. | ||||
Lagarias, JC and Soundararajan, K (2006). Benford's law for the 3x+1 function. Journal of the London Mathematical Society 74, pp. 289-303. ISSN/ISBN:0024-6107. DOI:10.1112/S0024610706023131. | ||||
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. | ||||
Leibon, G (2004). Google numbers. Chance News 13.03. | ||||
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. | ||||
Linville, M (2008). Introducing digit analysis with an interactive class exercise. Academy of Educational Leadership Journal 12(3), pp. 55-69. | ||||
Ma, D (2011). Benford’s Law and US Census Data, Parts I and II. WordPress.com Blog. Posted 25 Nov. 2011. | ||||
Manoochehrnia, P, Rachidi, F, Rubinstein, M, Schulz, W and Diefendorfer, G (2010). Benford’s Law and Its Application to Lightning Data. IEEE Transactions on Electromagnetic Compatibility 52(4), pp. 956-961. | ||||
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. | ||||
Mebane, WR Jr (2010). Fraud in the 2009 presidential election in Iran?. Chance 23(1), pp. 6-15. DOI:10.1080/09332480.2010.10739785. | ||||
Mebane, WR Jr (2011). Comment on “Benford's Law and the Detection of Election Fraud”. Political Analysis 19(3), pp. 269-272. DOI:10.1093/pan/mpr024. | ||||
Michalski, T and Stoltz, G (2013). Do Countries Falsify Economic Data Strategically? Some Evidence That They Might. The Review of Economics and Statistics 95(2), pp. 591-616. DOI:10.1162/REST_a_00274. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Morrison, KE (2010). The Multiplication Game. Mathematics Magazine 83, pp. 100-110. ISSN/ISBN:0025-570X. DOI:10.4169/002557010X482862. | ||||
Nagasaka, K (1984). On Benford's Law. Annals of the Institute of Statistical Mathematics 36(2), pp. 337-352. ISSN/ISBN:0020-3157. DOI:10.1007/BF02481974. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Nillsen, R (2010). Randomness and Recurrence in Dynamical Systems: a real analysis approach. Carus Monograph #31, Mathematical Association of America. ISSN/ISBN:978-0-88385-043-5. DOI:10.5948/UPO9781614440000. | ||||
Orita, M, Hagiwara, Y, Moritomo, A, Tsunoyama, K, Watanabe, T and Ohno, K (2013). Agreement of drug discovery data with Benford's law. Expert Opinion on Drug Discovery 8(1), pp. 1-5. DOI:10.1517/17460441.2013.740007. | ||||
Orita, M, Moritomo, A, Niimi, T and Ohno, K (2010). Use of Benford's law in drug discovery data. Drug Discovery Today, Vol. 15, Nos. 9–10, pp. 328–331. ISSN/ISBN:1359-6446. DOI:10.1016/j.drudis.2010.03.003. | ||||
Overhoff, G (2011). The Impact and Reality of Fraud Auditing - Benford's Law: Why and How To Use It. Course for 22nd Annual ACFE Fraud Conference and Exhibition. | ||||
Perez-Gonzalez, F, Heileman, GL and Abdallah, CT (2007). Benford's Law in Image Processing. Image Processing, pp I-405 - I-408. ICIP 2007. IEEE International Conference. ISSN/ISBN:1522-4880. DOI:10.1109/ICIP.2007.4378977. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. | ||||
Raimi, RA (1969). On Distribution of First Significant Figures. American Mathematical Monthly 76(4), pp. 342-348. ISSN/ISBN:0002-9890. DOI:10.2307/2316424. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Raimi, RA (1985). The First Digit Phenomenon Again. Proceedings of the American Philosophical Society 129(2), pp. 211-219. ISSN/ISBN:0003-049X. | ||||
Ravikumar, B (2008). The Benford-Newcomb Distribution and Unambiguous Context-Free Languages. International Journal of Foundations of Computer Science 19(3), pp. 717-727. ISSN/ISBN:0129-0541. DOI:10.1142/S0129054108005905. | ||||
Rindler, H (1973). Ein Problem aus der Theorie der Gleichverteilung. II. Math. Z. 135, pp. 73-92. ISSN/ISBN:0025-5874. DOI:10.1007/BF01214307. GER | ||||
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571. | ||||
Ross, KA (2012). First Digits of Squares and Cubes. Mathematics Magazine 85(1), pp. 36-42. DOI:10.4169/math.mag.85.1.36. | ||||
Sambridge, M, Tkalčić, H and Arroucau, P (2011). Benford's Law of First Digits: From Mathematical Curiosity to Change Detector. Asia Pacific Mathematics Newsletter 1(4), October 2011, 1-6. ISSN/ISBN:2010-3484. | ||||
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830. | ||||
Schatte, P (1973). Zur Verteilung der Mantisse in der Gleitkommadarstellung einer Zufallsgröße (Distribution of Mantissa in Floating Point Diagram of Random Variable). Zeitschrift fur Angewandte Mathematik und Mechanik 53(8), 553-565. ISSN/ISBN:0044-2267. DOI:10.1002/zamm.19730530807. GER | ||||
Schatte, P (1983). On H∞ -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122. | ||||
Schatte, P (1984). On the asymptotic uniform distribution of sums reduced mod 1. Math. Nachr. 115, 275-281. DOI:10.1002/mana.19841150121. | ||||
Schatte, P (1987). On the Asymptotic Behaviour of the Mantissa Distributions of Sums. Journal of Information Processing and Cybernetics EIK 23(7), 353-360. | ||||
Schatte, P (1988). On the uniform distribution of certain sequences and Benford’s law. Math. Nachr. 136, 271-273. DOI:10.1002/mana.19881360119. | ||||
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. | ||||
Schürger, K (2008). Extensions of Black-Scholes processes and Benford's law. Stochastic Processes and their Applications 118(7), 1219-1243. ISSN/ISBN:0304-4149. DOI:10.1016/j.spa.2007.07.017. | ||||
Schürger, K (2015). Lévy processes and Benford’s Law. In: S.J. Miller (ed.) Benford's Law: Theory and Applications, Princeton University Press: Princeton, NJ, pp. 135-173. | ||||
Scozzafava, R (1981). Un esempio concreto di probabilita non σ-additiva: la distribuzione della prima cifra significativa dei dati statistici. Boll. Un. Mat. Ital. A(5) 18(3), 403-410. ITA | ||||
Seaman, RS (2002). The relevance of Benford's Law to background field errors in data assimilation. Australian Meteorological Magazine 51(1), 25-33. ISSN/ISBN:0004-9743. | ||||
Sen, A and Sen, U (2011). Benford's law detects quantum phase transitions similarly as earthquakes. EPL (Europhysics Letters) 95(5), 50008, 1-6. DOI:10.1209/0295-5075/95/50008. | ||||
Shikano, S and Mack, V (2011). When does 2nd Digit Benford´s Law-Test signal an election fraud? Facts or misleading test results. Jahrbücher für Nationalökonomie und Statistik 231 (5+6), 719-732. | ||||
Sloane, NJA (2003). The On-Line Encyclopedia of Integer Sequences (OEIS). https://oeis.org, last accessed February 13, 2017. | ||||
Smith, SW (1997). Explaining Benford's Law. Chapter 34 in: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing: San Diego, CA. Republished in softcover by Newnes, 2002. ISSN/ISBN:0-9660176-3-3. | ||||
Snyder, MA, Curry, JH and Dougherty, AM (2001). Stochastic aspects of one-dimensional discrete dynamical systems: Benford's law. Physical Review E 64(2), Art. No. 026222. ISSN/ISBN:1063-651X. DOI:10.1103/PhysRevE.64.026222. | ||||
Sottili, G, Palladino, DM, Giaccio, B and Messina, P (2012). Benford's Law in Time Series Analysis of Seismic Clusters. Mathematical Geosciences Volume 44, Number 5 (2012), pp. 619-634. DOI:10.1007/s11004-012-9398-1. | ||||
Taylor, J (2005). Too many ties? An empirical analysis of the Venezuelan recall referendum counts. unpublished manuscript, Stanford University, USA. | ||||
Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498. | ||||
Turner, P (2007). A classroom exploration of Benford's Law and some error finding tricks in accounting . Proceedings of the 21st biennial conference of the Australian Association of Mathematics Teachers Inc. Mathematics: Essential for Learning, Essential for Life, edited by K. Milton, H. Reeves & T. Spencer, 2007, pp. 250-259 . ISSN/ISBN:978-1-875900-63-3. | ||||
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934. | ||||
Weaver, W (1963). The distribution of first significant digits. pp 270-277 in: Lady Luck: The Theory of Probability, Doubleday Anchor Series, New York. Republished by Dover, 1982. ISSN/ISBN:978-0486243429. | ||||
Xu, B, Wang, J, Liu, G and Dai, Y (2011). Photorealistic computer graphics forensics based on leading digit law. Journal of Electronics (China) 28(1) pp. 95-100. DOI:10.1007/s11767-011-0474-3. | ||||
Zhao, S and Wu, W (2010). Does Chinese Stock Indices Agree with Benford's Law?. 2010 International Conference on Management and Service Science (MASS), 24-26 Aug. 2010, Wuhan, Page(s): 1 - 3. ISSN/ISBN:978-1-4244-5325-2. DOI:10.1109/ICMSS.2010.5575999. |