This work cites the following items of the Benford Online Bibliography:
Beer, TW (2009). Terminal digit preference: beware of Benford's law. Journal of Clinical Pathology 62(2), p. 192. DOI:10.1136/jcp.2008.061721. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. | ||||
Costas, E, López-Rodas, V, Toro, FJ and Flores-Moya, A (2008). The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford's law. Aquatic Botany 89(3), pp. 341-343. DOI:10.1016/j.aquabot.2008.03.011. | ||||
Deckert, J, Myagkov, M and Ordeshook, PC (2011). Benford's Law and the Detection of Election Fraud. Political Analysis 19(3), pp. 245-268. DOI:10.1093/pan/mpr014. | ||||
Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), pp. 321-329. ISSN/ISBN:0266-4763. DOI:10.1080/02664760601004940. | ||||
El Sehity, T, Hoelzl, E and Kirchler, E (2005). Price developments after a nominal shock: Benford's Law and psychological pricing after the euro introduction. International Journal of Research in Marketing 22(4), pp. 471-480. ISSN/ISBN:0167-8116. DOI:10.1016/j.ijresmar.2005.09.002. | ||||
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. DOI:10.1371/journal.pone.0036624. | ||||
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE | ||||
Golbeck, J (2015). Benford’s Law Applies to Online Social Networks. PLoS ONE 10(8): e0135169. DOI:10.1371/journal.pone.0135169. | ||||
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. | ||||
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83. | ||||
Nigrini, MJ and Miller, SJ (2007). Benford’s Law Applied to Hydrology Data—Results and Relevance to Other Geophysical Data. Mathematical Geology 39(5), 469-490. ISSN/ISBN:0882-8121. DOI:10.1007/s11004-007-9109-5. | ||||
Nigrini, MJ and Wood, W (1995). Assessing the integrity of tabulated demographic data. Unpublished manuscript - Univ. Cincinnati and St. Mary’s University. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Rauch, B, Brähler, G, Engel, S and Göttsche, M (2011). Fact and Fiction in EU-Governmental Economic Data. German Economic Review 12(3), pp. 243-255. DOI:10.1111/j.1468-0475.2011.00542.x. | ||||
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. | ||||
Tödter, K-H (2009). Benford's Law as an Indicator of Fraud in Economics. German Economic Review 10(3), 339-351. DOI:10.1111/j.1468-0475.2009.00475.x. | ||||
Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498. | ||||
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934. |