Cross Reference Down

Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228.

This work cites the following items of the Benford Online Bibliography:


Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. View Complete Reference Online information Works that this work references Works that reference this work
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. View Complete Reference Online information Works that this work references Works that reference this work
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5. View Complete Reference Online information Works that this work references Works that reference this work
Brady, WG (1978). More on Benford’s law. Fibonacci Quarterly 16(1), pp. 51-52. View Complete Reference Online information Works that this work references Works that reference this work
Brown, JR and Duncan, RL (1970). Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences. Fibonacci Quarterly 8, pp. 482-486. ISSN/ISBN:0015-0517. View Complete Reference Online information Works that this work references Works that reference this work
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63. View Complete Reference Online information Works that this work references Works that reference this work
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. View Complete Reference Online information Works that this work references Works that reference this work
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. View Complete Reference Online information Works that this work references Works that reference this work
Cohen, DIA and Katz, TM (1984). Prime Numbers and the First Digit Phenomenon. Journal of Number Theory 18(3), pp. 261-268. ISSN/ISBN:0022-314X. DOI:10.1016/0022-314X(84)90061-1. View Complete Reference Online information Works that this work references Works that reference this work
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. View Complete Reference Online information Works that this work references Works that reference this work
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1997). Benford law. Encyclopedia of Mathematics Supplement, vol. 1, pp. 102-103. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358. View Complete Reference Online information Works that this work references Works that reference this work
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. View Complete Reference No online information available Works that this work references Works that reference this work
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. View Complete Reference Online information Works that this work references Works that reference this work
Kunoff, S (1987). N! has the first digit property. Fibonacci Quarterly 25, pp. 365-367. View Complete Reference No online information available Works that this work references Works that reference this work
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. View Complete Reference Online information Works that this work references Works that reference this work
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. View Complete Reference Online information Works that this work references Works that reference this work
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380. View Complete Reference Online information Works that this work references Works that reference this work
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109. View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1985). The First Digit Phenomenon Again. Proceedings of the American Philosophical Society 129(2), pp. 211-219. ISSN/ISBN:0003-049X. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1983). On H -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122. View Complete Reference Online information Works that this work references Works that reference this work
Sentance, WA (1973). A further analysis of Benford’s law. Fibonacci Quarterly 11, 490-494. View Complete Reference No online information available Works that this work references Works that reference this work
Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498. View Complete Reference Online information Works that this work references Works that reference this work
Vogt, W (2000). Benford’s Gesetz : Steuer- und Budgetsündern auf der Spur – Zahlen lügen nicht. Schweizer Versicherung 9, 27-29. GER View Complete Reference No online information available No Bibliography works referenced by this work. Works that reference this work
Webb, W (1975). Distribution of the first digits of Fibonacci numbers. Fibonacci Quarterly 13, pp. 334-336. View Complete Reference No online information available Works that this work references Works that reference this work
Weyl, H (1916). Über die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen 77, 313-352. ISSN/ISBN:0025-5831. DOI:10.1007/BF01475864. GER View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Wlodarski, J (1971). Fibonacci and Lucas Numbers tend to obey Benford’s law. Fibonacci Quarterly 9, 87-88. View Complete Reference No online information available Works that this work references Works that reference this work