This work is cited by the following items of the Benford Online Bibliography:
| Allen, DP (1999). A new approach to the first digit phenomenon. The Toth-Maatian Review 14(3), pp. 6839-6847. |
|
|
|
|
| Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. |
|
|
|
|
| Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2017). Leading Digits of Mersenne Numbers. Preprint in arXiv:1712.04425 [math.NT]; last accessed October 23, 2018. |
|
|
|
|
| Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2021). Leading digits of Mersenne numbers. Experimental Mathematics 30(3), pp. 405–421. DOI:10.1080/10586458.2018.1551162. |
|
|
|
|
| Caldwell, CK (2008). Does Benford's law apply to prime numbers?. From: The Prime Pages (prime number research, records and resources) FAQ. |
|
|
|
|
| Chou, MC, Kong, Q, Teo, CP, Wang, Z and Zheng, H (2009). Benford's Law and Number Selection in Fixed-Odds Numbers Game. Journal of Gambling Studies 25(4), pp. 503-521. DOI:10.1007/s10899-009-9145-9. |
|
|
|
|
| Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 49-63. ISSN/ISBN:0236-5294. DOI:10.1007/s10474-012-0244-1. |
|
|
|
|
| Giuliano-Antonini, R and Grekos, G (2005). Regular sets and conditional density: an extension of Benford's law. Colloquium Mathematicum, 103(2), pp. 173–192. DOI:10.4064/cm103-2-3. |
|
|
|
|
| Glunz, H (2022). Significant Digits of Primes in Subsets. Preprint arXiv:2207.07204 [math.NT]; last accessed August 8, 2022. DOI:10.48550/ARXIV.2207.07204. |
|
|
|
|
| Glunz, H (2023). Significant Digits of Primes in Subsets. INTEGERS 23. DOI:10.5281/zenodo.8099781. |
|
|
|
|
| Goto, K (1992). Some examples of Benford sequences. Mathematical Journal of the Okayama University 34, pp. 225-232. |
|
|
|
|
| Hüngerbühler, N (2007). Benfords Gesetz über führende Ziffern: Wie die Mathematik Steuersündern das Fürchten lehrt. EDUCETH - Das Bildungsportal der ETH Zürich. GER |
|
|
|
|
| Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. |
|
|
|
|
| Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. |
|
|
|
|
| Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. |
|
|
|
|
| Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014. |
|
|
|
|
| Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV). ISSN/ISBN:978-3-540-18814-8. DOI:10.1007/BFb0078471. |
|
|
|
|
| Knopfmacher, J (1981). Initial digits in number theory. Fibonacci Quarterly 19(2), pp. 121-126. |
|
|
|
|
| Li, Z, Cong, L and Wang, H (2004). Discussion on Benford’s law and its application. posted on arXiv:math/0408057, Aug 4, 2004. |
|
|
|
|
| Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. |
|
|
|
|
| Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. |
|
|
|
|
| Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 45-58. ISSN/ISBN:0065-1036. DOI:10.4064/aa163-1-4. |
|
|
|
|
| McLaughlin, WI and Lundy, SA (1984). Digit functions of integer sequences. Fibonacci Quarterly 22(2), pp. 105-115. ISSN/ISBN:0015-0517. |
|
|
|
|
| Pavlović, V, Knežević, G, Joksimović, M and Joksimović, D (2019). Fraud Detection in Financial Statements Applying Benford's Law with Monte Carlo Simulation. Acta oeconomica 69(2), pp.217-239. DOI:10.1556/032.2019.69.2.4. |
|
|
|
|
| Pollack, P and Roy, AS (2022). Dirichlet, Sierpiński, and Benford. Journal of Number Theory (pre-proof). DOI:10.1016/j.jnt.2021.12.010. |
|
|
|
|
| Posch, PN (2005). Ziffernanalyse in Theorie und Praxis. Testverfahren zur Fälschungsaufspürung mit Benfords Gesetz. Diploma thesis, Universität Bonn, Germany, 2003. Published by Shaker Verlag, Aachen. GER |
|
|
|
|
| Posch, PN (2008). A Survey on Sequences and Distribution Functions satisfying the First-Digit-Law. Journal of Statistics & Management Systems 11(1), pp. 1-19. DOI:10.1080/09720510.2008.10701294. |
|
|
|
|
| Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. |
|
|
|
|
| Schatte, P (1983). On H∞ -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122. |
|
|
|
|
| Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. |
|
|
|