This work is cited by the following items of the Benford Online Bibliography:
Ausloos, M, Herteliu, C and Ileanu, B-V (2015). Breakdown of Benford’s law for birth data. Physica A: Statistical Mechanics and its Applications Volume 419, pp. 736–745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041. | ||||
Baumeister, J and Macedo, TG (2011). Von den Zufallszahlen und ihrem Gebrauch. Stand: 21, November 2011. GER | ||||
Berger, A (2005). Benford’s Law in power-like dynamical systems. Stochastics and Dynamics 5, pp. 587-607. ISSN/ISBN:0219-4937. DOI:10.1142/S0219493705001602. | ||||
Berger, A (2005). Multi-dimensional dynamical systems and Benford's law. Discrete and Continuous Dynamical Systems 13(1), pp. 219-237. ISSN/ISBN:1078-0947. DOI:10.3934/dcds.2005.13.219. | ||||
Berger, A (2005). Dynamics and digits: on the ubiquity of Benford’s law. In: F. Dumortier, H. Broer, J. Mahwin, A. Vanderbauwhede, S. Verduyn Lunel (eds): Proceedings of Equadiff 2003. World Scientific, pp. 693-695. DOI:10.1142/9789812702067_0115 . | ||||
Berger, A (2011). Some dynamical properties of Benford sequences. Journal of Difference Equations and Applications 17(2), pp. 137-159. DOI:10.1080/10236198.2010.549012. | ||||
Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. | ||||
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Berger, A and Siegmund, S (2007). On the distribution of mantissae in nonautonomous difference equations. Journal of Difference Equations and Applications 13(8-9), pp. 829-845. ISSN/ISBN:1023-6198. DOI:10.1080/10236190701388039. | ||||
Biau, D. (2015). The first-digit frequencies in data of turbulent flows. Physica A: Statistical Mechanics and its Applications Volume 440, pp. 147-154. DOI:10.1016/j.physa.2015.08.016. | ||||
Blondeau Da Silva, S (2019). Benford or Not Benford: A Systematic But Not Always Well-Founded Use of an Elegant Law in Experimental Fields. Communications in Mathematics and Statistics, pp. 1-35. ISSN/ISBN:2194-6701. DOI:10.1007/s40304-018-00172-1. | ||||
Blondeau da Silva, S (2019). BeyondBenford: An R Package to Determine Which of Benford’s or BDS’s Distributions is the Most Relevant. Preprint hal-02310013; also posted on arXiv:1910.06104 [physics.soc-ph]; last accessed October 21, 2019. | ||||
Blondeau Da Silva, S (2020). Limits of Benford’s Law in Experimental Field. International Journal of Applied Mathematics 33(4), pp. 685-695. DOI:10.12732/ijam.v33i4.12. | ||||
Blondeau Da Silva, S (2022). An Alternative to the Oversimplifying Benford’s Law in Experimental Fields. Sankhya B. DOI:10.1007/s13571-022-00287-0. | ||||
Bonache, A, Moris, K and Maurice, J (2009). Risque associé à l'utilisation de la loi de Benford pour détecter les fraudes dans le secteur de la mode [Risk of Reviews based on Benford Law in the Fashion Sector]. Munich Personal RePEc Archive (MPRA) Paper No. 15352, posted 26 May 2009. FRE | ||||
Bonache, AB, Moris, K and Maurice, J (2010). Détection de fraudes et loi de Benford: Quelques risques associés [Fraud detection and Benford’s law: some linked risks]. Revue Française de Comptabilité n°431, pp. 24-27. FRE | ||||
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861. | ||||
Cáceres, JLH, García, JLP, Ortiz, CMM and Dominguez, LG (2008). First digit distribution in some biological data sets. Possible explanations for departures from Benford's Law. Electronic J Biomed 1, pp. 27-35. | ||||
Canessa, E (2003). Theory of analogous force on number sets. Physica A 328, pp. 44-52. DOI:10.1016/S0378-4371(03)00526-0. | ||||
Clippe, P and Ausloos, M (2012). Benford's law and Theil transform of financial data. Physica A: Statistical Mechanics and its Applications 391(24), pp. 6556–6567. | ||||
Cong, M and Ma, B-Q (2019). A Proof of First Digit Law from Laplace Transform. Chinese Physics Letters, 36, 7, 070201. DOI:10.1088/0256-307X/36/7/070201. | ||||
Costa, JI (2012). Desenvolvimento de metodologias contabilométricas aplicadas a auditoria contábil digital: uma proposta de análise da lei de Newcomb-Benford para os Tribunais de Contas. Thesis, Universidade Federal de Pernambuco, Recife, Brasil. POR | ||||
Dutta, A, Voumik, LC, Kumarasankaralingam, L, Rahaman, A and Zimon, G (2023). The Silicon Valley Bank Failure: Application of Benford’s Law to Spot Abnormalities and Risks. Risks 11(7), p. 120. DOI:10.3390/risks11070120. | ||||
García-Sosa, AT (2019). Benford's law in medicinal chemistry: Implications for drug design. Future Medicinal Chemistry 11(17), pp. 2247-2253. DOI:10.4155/fmc-2019-0006. | ||||
González, RG, González, RN and Valenzuela, RIG (2023). La Supremacía del Número Uno. EPISTEMUS 17(34). DOI:10.36790/epistemus.v17i34.275. SPA | ||||
Guha, D, Mahapatra, PK, Misra, RP and Singh, Y (2020). Exploring the Applicability of Benford’s Law in Data Quality Management. Unpublished manuscript. | ||||
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. | ||||
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. | ||||
Kim, S (2012). Benford’s law in non-equilibrium processes: Droplet collisions case. Physica A: Statistical Mechanics and its Applications, Vol. 391, No. 20, pp. 4970–4975. DOI:10.1016/j.physa.2012.05.043. | ||||
Li, Q, Fu, Z and Yuan, N (2015). Beyond Benford's Law: Distinguishing Noise from Chaos. PLoS ONE, 10, e0129161. DOI:10.1371/journal.pone.0129161. | ||||
Omerzu, N and Kolar, I (2019). Do the Financial Statements of Listed Companies on the Ljubljana Stock Exchange Pass the Benford’s Law Test?. International Business Research, Canadian Center of Science and Education 12(1), pp. 54-64, January. DOI:10.5539/ibr.v12n1p54. | ||||
Pocheau, A (2006). The significant digit law: a paradigm of statistical scale symmetries . European Physical Journal B 49(4), pp. 491-511. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2006-00084-2. | ||||
Seenivasan, P, Easwaran, S, Sridhar, S and Sinha, S (2016). Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models. Frontiers in Physiology 6, p. 390. DOI:10.3389/fphys.2015.00390. | ||||
Shao, L and Ma, BQ (2009). First Digit Distribution of Hadron full width. Modern Physics Letters A, 24(40), 3275-3282. ISSN/ISBN:0217-7323. DOI:10.1142/S0217732309031223. | ||||
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003. | ||||
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. | ||||
Snyder, MA, Curry, JH and Dougherty, AM (2001). Stochastic aspects of one-dimensional discrete dynamical systems: Benford's law. Physical Review E 64(2), Art. No. 026222. ISSN/ISBN:1063-651X. DOI:10.1103/PhysRevE.64.026222. | ||||
Toledo, PA, Riquelme, SR and Campos, JA (2015). Earthquake source parameters that display the first digit phenomenon. Nonlin. Processes Geophys., 22(5), pp. 625–632. DOI:10.5194/npg-22-625-2015. | ||||
Whyman, G, Ohtori, N, Shulzinger, E and Bormashenko, E (2016). Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?. Physica A: Statistical Mechanics and its Applications Volume 461, pp. 595-601. DOI:10.1016/j.physa.2016.06.054. | ||||
Wikipedia (2018). Benfordsches Gesetz. Posted on German Wikipedia website; last accessed April 30, 2019. GER |