This work is cited by the following items of the Benford Online Bibliography:
Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. | ||||
Barlow, JL and Bareiss, EH (1985). On Roundoff Error Distributions in Floating Point and Logarithmic Arithmetic. Computing 34(4), pp. 325-347. ISSN/ISBN:0010-485X. DOI:10.1007/BF02251833. | ||||
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. | ||||
Berger, A and Hill, TP (2007). Newton’s method obeys Benford’s law. American Mathematical Monthly 114 (7), pp. 588-601. ISSN/ISBN:0002-9890. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136. | ||||
Brähler, G, Bensmann, M and Jakobi, HR (2011). Das Benfordsche Gesetz und seine Anwendbarkeit bei der digitalen Prüfung von Fahrtenbüchern. Ilmenauer Schriften zur Betriebswirtschaftslehre 3/2011. ISSN/ISBN:978-3-940882-28-8. GER | ||||
Chaitin-Chatelin, F (1994). Le calcul sur ordinateur a precision finie. Theorie et etat de l’art. CERFACS REPORT TR/PA/94/05. FRE | ||||
Chaitin-Chatelin, F (1995). Le calcul qualitatif. Comment donner un sens a des resultats faux?. CERFACS REPORT TR/PA/95/10. FRE | ||||
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019. | ||||
Chenavier, N and Schneider, D (2018). On the discrepancy of powers of random variables. Statistics & Probability Letters 134, pp. 5-14. DOI:10.1016/j.spl.2017.10.006. | ||||
Clenshaw, CV, Olver, FWJ and Turner, PR (1989). Level-Index Arithmetic - An Introductory Survey. Lecture Notes in Mathematics 1397, pp. 95-168. ISSN/ISBN:0075-8434. DOI:10.1007/BFb0085718. | ||||
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. | ||||
Corazza, M, Ellero, A and Zorzi, A (2018). The importance of being “one” (or Benford’s law). Lettera Matematica 6(1), pp. 33–39. DOI:10.1007/s40329-018-0218-4. | ||||
Davic, RD (2022). Correspondence of Newcomb-Benford law with ecological processes . Posted on bioRxiv preprint server of Cold Springs Harbor Laboratory June 27, 2022 . DOI:10.1101/2022.06.27.497806. | ||||
Farbaniec, M, Grabiński, T, Zabłocki, B and Zając, W (2011). Application of the first digit law in credibility evaluation of the financial accounting data based on particular cases. Presentation for 10th International Congress on Internal Control, Internal Audit, Fraud and Anti-Corruption Issues, Kraków, September 14-16, 2011. | ||||
Fonseca, PMT da (2016). Digit analysis using Benford's Law: A Bayesian approach. Masters Thesis, ISEG - Instituto Superior de Economia e Gestão, Lisbon School of Economics & Management, Portugal. | ||||
Friar, JL, Goldman, T and Pérez-Mercader, J (2016). Ubiquity of Benford’s law and emergence of the reciprocal distribution. Physics Letters A 380(22), pp. 1895–1899. ISSN/ISBN:0375-9601. DOI:10.1016/j.physleta.2016.03.045. | ||||
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. DOI:10.1371/journal.pone.0036624. | ||||
Grendar, M, Judge, G and Schechter, L (2007). An empirical non-parametric likelihood family of data-based Benford-like distributions. Physica A: Statistical Mechanics and its Applications 380, pp. 429-438. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2007.02.062. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. | ||||
Iyengar, SS, Rajagopal, AK and Uppuluri, VRR (1983). String Patterns of Leading Digits. Applied Mathematics and Computation 12(4), pp. 321-337. ISSN/ISBN:0096-3003. DOI:10.1016/0096-3003(83)90045-0. | ||||
Jamain, A (2001). Benford’s Law. Master Thesis. Imperial College of London and ENSIMAG. | ||||
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60. | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Jing, J (2013). Benford’s Law and Stick Decomposition. Undergraduate thesis, Williams College, Williamstown, Massachusetts . | ||||
Johnstone, P and Petry, FE (1994). Design and Analysis of Nonbinary Radix Floating-Point Representations. Computers & Electrical Engineering 20(1), pp. 39-50. ISSN/ISBN:0045-7906. DOI:10.1016/0045-7906(94)90005-1. | ||||
Kak, SC (1983). Strings of first digits of powers of a number. Indian J. Pure Appl. Math. 14(7), pp. 896-907. | ||||
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. | ||||
Kossovsky, AE (2006). Towards a Better Understanding of the Leading Digits Phenomena. posted December 21, 2006 on arXiv:math/0612627. | ||||
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. | ||||
Kossovsky, AE (2014). Arithmetical Tugs of War and Benford's Law. Preprint arXiv:1410.2174 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2015). Random Consolidations and Fragmentations Cycles Lead to Benford' Law. Preprint arXiv:1505.05235 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2016). Exponential Growth Series and Benford's Law. Preprint arXiv:1606.04425 [math.ST]; last accessed October 19, 2020. | ||||
Kreifelts, T (1973). Optimal Choice of Basis for a Floating-Point Arithmetic [Optimale Wahl für eine Gleitkomma-Arithmetik] . Computing 11(4), pp. 353-363. ISSN/ISBN:0010-485X. GER | ||||
Li, Z, Cong, L and Wang, H (2004). Discussion on Benford’s law and its application. posted on arXiv:math/0408057, Aug 4, 2004. | ||||
Martín, AB (2003). Sistematización del proceso de depuración de los datos en estudios con seguimientos. PhD Thesis, Universitat Autònoma de Barcelona, Spain. SPA | ||||
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. | ||||
Massé, B and Schneider, D (2012). Random number sequences and the first digit phenomenon. Electronic Journal of Probability, Vol 17, Article 86, pp. 1-17 . DOI:10.1214/EJP.v17-1900. | ||||
Matula, VV and Kornerup, P (1980). Foundations of Finite Precision Rational Arithmetic. pp 85-111 in: Alefeld, G, Grigorieff, RD (eds.) Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Computing Supplementum 2, Springer, Wien-New York. | ||||
McLaughlin, WI and Lundy, SA (1984). Digit functions of integer sequences. Fibonacci Quarterly 22(2), pp. 105-115. ISSN/ISBN:0015-0517. | ||||
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2008). The Modulo 1 Central Limit Theorem and Benford's Law for Products. International Journal of Algebra 2(3), pp. 119 - 130. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Mochty, L (2002). Die Aufdeckung von Manipulationen im Rechnungswesen - Was leistet das Benford's Law?. Die Wirtschaftsprüfung 14, pp. 725-736. GER | ||||
Nguyen, HT, Kreinovich, V and Longpré, L (2003). Dirty pages of logarithm tables, lifetime of the universe, and subjective (fuzzy) probabilities on finite and infinite intervals. The 12th IEEE International Conference on Fuzzy Systems. FUZZ’03. Fuzzy Systems 1, pp. 67-73. DOI:10.1109/FUZZ.2003.1209339. | ||||
Nguyen, HT, Kreinovich, V and Longpré, L (2004). Dirty Pages of Logarithm Tables, Lifetime of the Universe, and (Subjective) Probabilities on Finite and Innite Intervals. Reliable Computing 10(2), 83-106. DOI:10.1023/B:REOM.0000015848.19449.12. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, pp. 69-81. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. | ||||
Ozawa, K (2019). Continuous Distributions on (0, ∞) Giving Benford’s Law Exactly. Preprint arXiv:1905.02031 [math.PR]; last accessed June 6, 2019. | ||||
Palacios, NT (2020). Benford's Law. History, mathematical justification and applications. Degree in Statistics Final Degree Project, Universidad de Valladolid. Facultad de Ciencias. | ||||
Pimbley, JM (2014). Benford’s Law as a Logarithmic Transformation. Maxwell Consulting Archives. Last retrieved 20 April 2018. | ||||
Pippenger, N (2002). Expected acceptance counts for finite automata with almost uniform input. Algorithms and Computation, Proceedings. Lecture Notes in Computer Science 2518, pp. 636-646. ISSN/ISBN:0302-9743. DOI:10.1007/3-540-36136-7_56. | ||||
Pippenger, N (2004). Entropy and expected acceptance counts for finite automata. IEEE Transactions on Information Theory 50(1), pp. 78-88. ISSN/ISBN:0018-9448. DOI:10.1109/TIT.2003.821997. | ||||
Posch, PN (2005). Ziffernanalyse in Theorie und Praxis. Testverfahren zur Fälschungsaufspürung mit Benfords Gesetz. Diploma thesis, Universität Bonn, Germany, 2003. Published by Shaker Verlag, Aachen. GER | ||||
Posch, PN (2010). Ziffernanalyse mit dem Newcomb-Benford Gesetz in Theorie und Praxis. VEW Verlag Europäische Wirtschaft: Munich 2nd edition. GER | ||||
Posch, PN (2013). Benford Or Not-Benford? How To Test For The First-Digit-Law. JP Journal of Fundamental and Applied Statistics 4(1/2), pp. 1-22. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Rajagopal, AK, Uppuluri, VRR, Scott, DS, Iyengar, SS and Yellayi, M (1984). New structural properties of strings generated by leading digits of 2N. Applied Mathematics and Computation 14(3), pp. 221-244. DOI:10.1016/0096-3003(84)90023-7. | ||||
Rauch, B, Göttsche, M, El Mouaaouy, F and Geidl, F (2013). Empirical methods in competition analysis – Applying Benford’s law to the Western Australian petroleum market. Available at SSRN: https://ssrn.com/abstract=2364384; last accessed Dec 7, 2019. DOI:10.2139/ssrn.2364384. | ||||
Rodriguez, RJ (2004). Reducing False Alarms in the Detection of Human Influence on Data. Journal of Accounting, Auditing & Finance 19(2), pp. 141-158. DOI:10.1177/0148558X0401900202. | ||||
Schäfer, C, Schräpler, J-P and Müller, KR (2004). Identification, Characteristics and Impact of Faked and Fraudulent Interviews in Surveys. Proceedings of European Conference on Quality and Methodology in Official Statistics. | ||||
Schäfer, C, Schräpler, J-P, Müller, KR and Wagner GG (2004). Automatic Identification of Faked and Fraudulent Interviews in Surveys by Two Different Methods. Discussion paper 441, DIW Berlin (German Institute for Economic Research). ISSN/ISBN:1619-4535. | ||||
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. | ||||
Schatte, P (1998). On Benford's law to variable base. Statistics & Probability Letters 37(4): 391-397. ISSN/ISBN:0167-7152. DOI:10.1016/S0167-7152(97)00142-9. | ||||
Scheidt, JK and Schelin, CW (1987). Distributions of floating point numbers. Computing 38(4), 315-324. ISSN/ISBN:0010-485X. DOI:10.1007/BF02278709. | ||||
Schräpler, J-P (2010). Benford's Law as an instrument for fraud detection in surveys using the data of the Socio-Economic Panel (SOEP). Socio-Economic Panel (SOEP) paper No. 273, March 2, 2010. DOI:10.2139/ssrn.1562574. | ||||
Schräpler, J-P (2011). Benford's Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 231(5-6). DOI:10.1515/jbnst-2011-5-609. | ||||
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. | ||||
Tsao, NK (1974). On the Distributions of Significant Digits and Roundoff Errors. Communications of the ACM 17(5), 269-271. ISSN/ISBN:0001-0782. DOI:10.1145/360980.360998. | ||||
Turner, PR (1982). The Distribution of Leading Significant Digits. IMA Journal orf Numerical Analysis 2(4), 407-412. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/2.4.407. | ||||
Turner, PR (1984). Further Revelations on L.S.D.. IMA Journal of Numerical Analysis 4(2), 225-231. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/4.2.225. | ||||
Valadier, M (2012). The Benford phenomenon for random variables. Discussion of Feller's way. Math arXiv:1203.2518; posted 19 Apr 2012. | ||||
Watrin, C, Struffert, R and Ullmann, R (2008). Benford’s Law: an instrument for selecting tax audit targets?. Review of Managerial Science 2(3), 219-237. DOI:10.1007/s11846-008-0019-9. | ||||
Wojcik, MR (2013). Notes on scale-invariance and base-invariance for Benford's Law. arXiv:1307.3620 [math.PR]. | ||||
Wolowik, P (2005). Prawo Benforda – testowanie i wery kacja poprawności danych pomiarowych [Benford's Law - testing and verification of the correctness of measurement data] . Pr- zegląd Telekomunikacyjny – Wiadomości Telekomunikacyjne” 11, pp. 414-418. POL |