This work is cited by the following items of the Benford Online Bibliography:
Aggarwal, V and Dharni, K (2020). Deshelling the Shell Companies Using Benford’s Law: An Emerging Market Study. Vikalpa 45(3), pp. 160-169. DOI:10.1177/0256090920979695. | ||||
Agyemang, EF, Mensah, JA and Nyarko, E (2023). How dependable is World Continental COVID-19 data? Disclosure of Inconsistencies in Daily Reportage Confirmed Cases, Recovered and Deaths During First Wave. Preprint – submitted to Heliyon. DOI:10.2139/ssrn.4516032. | ||||
Amruthnath, N (2020). Benford’s Law: Applying to Existing Data. Posted on R-bloggers.com, last accessed August 29, 2020. | ||||
Anab, F, Khaliq, A and Younas, I (2021). A Statistical Analysis of Covid-19 Data of Pakistan by Applying Benford’s Law. Journal of Applied Pharmacy 13, pp. 55-60. | ||||
Balashov, VS, Yan, Y and Zhu, X (2021). Using the Newcomb–Benford law to study the association between a country’s COVID-19 reporting accuracy and its development. Scientific Reports 11, pp. 22914. DOI:10.1038/s41598-021-02367-z. | ||||
Bannier, C, Ewelt-Knauer, C, Lips, J and Winker, P (2020). Benford’s Law and Its Application to Detecting Financial Fraud and Manipulation. Ch. 18 in: Corruption and Fraud in Financial Markets: Malpractice, Misconduct and Manipulation, C. Alexander and D. Cumming (Eds.), John Wiley & Sons: Chichester, U.K., pp. 473-504. ISSN/ISBN:978-1-119-42177-1. | ||||
Bannier, C, Ewelt-Knauer, C, Winker, P and Lips, J (2019). Benford’s law and its application to detecting financial fraud and manipulation. Chapter 5 of Econometric Modelling of Energy & Financial Markets, Doctoral Thesis of Johannes Lips, Justus-Liebig University Gießen . | ||||
Blondeau da Silva, S (2019). BeyondBenford: An R Package to Determine Which of Benford’s or BDS’s Distributions is the Most Relevant. Preprint hal-02310013; also posted on arXiv:1910.06104 [physics.soc-ph]; last accessed October 21, 2019. | ||||
Blondeau Da Silva, S (2020). Limits of Benford’s Law in Experimental Field. International Journal of Applied Mathematics 33(4), pp. 685-695. DOI:10.12732/ijam.v33i4.12. | ||||
Blondeau Da Silva, S (2022). An Alternative to the Oversimplifying Benford’s Law in Experimental Fields. Sankhya B. DOI:10.1007/s13571-022-00287-0. | ||||
Campanelli, L (2022). On the Euclidean distance statistic of Benford’s law. Communications in Statistics - Theory and Methods, pp. 1-24. DOI:10.1080/03610926.2022.2082480}. | ||||
Campanelli, L (2022). Testing Benford's Law: from small to very large data sets. Spanish Journal of Statistics 4(1), pp. 41-54. DOI:10.37830/SJS.2022.1.03. | ||||
Campanelli, L (2022). Breaking Benford’s law: A statistical analysis of Covid-19 data using the Euclidean distance statistic. Preprint submitted to Statistics in Transition. | ||||
Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). Newcomb-Benford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106-115. DOI:10.1073/pnas.1806617115. | ||||
da Silva, CG and Carreira, PMR (2019). Estimating the Proportion of Misstated Records in an Audit Data set using Benford’s Law. Journal of Accounting, Finance and Auditing Studies 5(2), pp. 146-162. DOI:10.32602/jafas.2019.25. | ||||
de Jong, J, de Bruijne, J and De Ridder, J (2020). Benford’s law in the Gaia universe. Preprint arXiv:2008.12271 [astro-ph.GA]; last accessed August 8, 2022. Published Astron. & Astrophys. 642, A205. | ||||
Demidenko, E (2020). Advanced Statistics with Applications in R. Wiley: Hoboken, NJ (Chapter 2.16). ISSN/ISBN:1118387988. | ||||
Farhadi, N (2021). Can we rely on COVID-19 data? An assessment of data from over 200 countries worldwide. Science Progress 104(2). DOI:10.1177/00368504211021232. | ||||
Farhadi, N and Lahooti, H (2021). Are COVID-19 Data Reliable? A Quantitative Analysis of Pandemic Data from 182 Countries. COVID 1, pp. 137–152. DOI:10.3390/covid1010013. | ||||
Farhadi, N and Lahooti, H (2022). Forensic Analysis of COVID-19 Data from 198 Countries Two Years after the Pandemic Outbreak. COVID 2(4), pp. 472-484. DOI:10.3390/covid2040034. | ||||
Gepp, A, Kumar, K and Bhattacharya, S (2023). Taking the hunch out of the crunch: A framework to improve variable selection in models to detect financial statement fraud. Accounting & Finance 2023, pp.1–20.. DOI:10.1111/acfi.13192 . | ||||
Gheorghe, GC, Manrique-Hernández, EF and Idrovo, AJ (2022). Injuries and fatalities in Colombian mining emergencies (2005-2018): a retrospective ecological study. Revista Brasileira de Medicina do Trabalho 20(4), pp. 591-598. DOI:10.47626/1679-4435-2022-799. | ||||
Goodman, WM (2023). Applying and Testing Benford's Law Are Not the Same. Spanish Journal of Statistics 5(1), pp. 43-53. DOI:10.37830/SJS.2023.1.03. | ||||
Hull, B, Long, A and Hughes, IG (2022). Using residual heat maps to visualise Benford's multi-digit law. European Journal of Physics 43, 015803. DOI:10.1088/1361-6404/ac3671. | ||||
Ileanu, B-V (2021). Time Lag Evidence of Anti-Abortion Decree and Perturbation of Births Distribution. A Benford Law Approach. Preprint arXiv:2106.15520 [physics.soc-ph]; last accessed July 30, 2021. | ||||
Jones, WA (2019). A Benford Analysis of National Collegiate Athletic Association Division I Finance Data. Journal of Sports Economics. DOI:10.1177/1527002519887430. | ||||
Jošić, H and Žmuk, B (2018). The Application of Benford’s Law in psychological pricing detection. Zbornik radova Ekonomskog fakulteta Sveučilišta u Mostaru, No. 24, pp. 37-57. | ||||
Koesters, N, McMenemy, A and Bélanger, Y (2020). Simulating Epidemics with a SIRD Model and Testing with Benford’s Law. Preprint. | ||||
Kopczewska, K and Kopczewski, T (2022). Natural spatial pattern—When mutual socio-geo distances between cities follow Benford’s law. Plos one 17(10), p. e0276450. DOI:10.1371/journal.pone.0276450. | ||||
Lemons, DS, Lemons, N and Peter, W (2021). First Digit Oscillations. Stats 4(3), pp. 595-601. DOI:10.3390/stats4030035. | ||||
Leung, CH, Luo, YB, Lok, TC and Luo, ZC (2021). Analysis and Prediction of COVID-19 Data Quality Based on Benford's Law-- Take Data from 51 Countries and Regions as an Example. Science Innovation 9(2), pp. 53-62. DOI:10.11648/j.si.20210902.14. CHI | ||||
Long, MA, Stretesky, PB, Berry, KJ, Johnston, JE and Lynch, MJ (2023). Applying Benford's Law for Assessing the Validity of Social Science Data. Cambridge University Press. ISSN/ISBN:1009463683, 97810094. | ||||
Masters, AB (2020). Benford’s Law and Election Data. Blog posted on Medium, Nov 15. | ||||
Mills, RJ, Beaulieu, TY, Feldon, DF and Olsen, DH (2020). Implications of Prelecture Material on Cognitive Load and Instructional Effectiveness in Cross‐Disciplinary IS Education: The Nexus of Benford's Law and SQL. Decision Sciences Journal of Innovative Education 18, pp. 313-338. DOI:10.1111/dsji.12206. | ||||
Mir, TA, Darzi, MA, Ishtiaq, PM and Mufti, S (2023). Benford’s law: an application to sunspot data. Preprint posted on Research Square. DOI:10.21203/rs.3.rs-3372099/v1. | ||||
Miranda, AT (2020). The Distribution of COVID-19 Cases in the Philippines and the Benford’s Law. Philippine e-Journal for Applied Research and Development 10, pp. 29-34. | ||||
Nakamura, J, Lall, U, Kushnir, Y and Harr, PA (2022). A Saturated Stochastic Simulator: Synthetic US Gulf Coast Tropical Cyclone Precipitation Fields. Preprint posted on ResearchSquare. DOI:10.21203/rs.3.rs-1895622/v1. | ||||
Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055. | ||||
Wei, A and Vellwock, AE (2020). Is COVID-19 data reliable? A statistical analysis with Benford's Law. Preprint, posted September. DOI:10.13140/RG.2.2.31321.75365/1. |