This work is cited by the following items of the Benford Online Bibliography:
Agyemang, EF, Nortey, ENN, Minkah, R and Asah-Asante, K (2023). Baseline comparative analysis and review of election forensics: Application to Ghana’s 2012 and 2020 presidential elections. Heliyon 9 p. e18276. DOI:10.1016/j.heliyon.2023.e18276. | ||||
Anderson, KM, Dayaratna, K, Gonshorowski, D and Miller, SJ (2022). A New Benford Test for Clustered Data with Applications to American Elections. Stats 5(3), pp. 841–855. DOI:10.3390/stats5030049 . | ||||
Arezzo, MF and Cerqueti, R (2023). A Benford’s Law view of inspections’ reasonability. Physica A: Statistical Mechanics and its Applications 632, Part 1, pp. 129294. DOI:10.1016/j.physa.2023.129294. | ||||
Ausloos, M, Ficcadenti, V, Dhesi, G and Shakeel, M (2021). Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity. Physica A: Statistical Mechanics and its Applications 574, pp. 125969. DOI:10.1016/j.physa.2021.125969. | ||||
Ausloos, M, Ficcadenti, V, Dhesi, G and Shakeel, M (2021). Benford's laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity. Preprint arXiv:2104.07962 [q-fin.ST]; last accessed April 30, 2021. To appear in: Physica A: Statistical Mechanics and its Applications, 574. DOI:10.1016/j.physa.2021.125969. | ||||
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association. DOI:10.1080/01621459.2021.1891927. | ||||
Beber, B and Scacco, A (2012). What the Numbers Say: A Digit-Based Test for Election Fraud. Political Analysis 20 (2), pp. 211-234. DOI:10.1093/pan/mps003. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Brown, MS (2012). Does the Application of Benford's Law Reliably Identify Fraud on Election Day? . Masters thesis, Georgetown University. | ||||
Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). Newcomb-Benford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106-115. DOI:10.1073/pnas.1806617115. | ||||
Cerqueti, R and Maggi, M (2021). Data validity and statistical conformity with Benford’s Law. Chaos, Solitons & Fractals 144, p. 110740 . DOI:10.1016/j.chaos.2021.110740. | ||||
Chamberlain, A and Yanus, AB (2021). Evaluating Federated Voluntary Associations’ Membership Data: An Application of Benford's Law. Social Science Quarterly pp. 1– 12. DOI:10.1111/ssqu.13015. | ||||
Costa, JI (2012). Desenvolvimento de metodologias contabilométricas aplicadas a auditoria contábil digital: uma proposta de análise da lei de Newcomb-Benford para os Tribunais de Contas. Thesis, Universidade Federal de Pernambuco, Recife, Brasil. POR | ||||
Ensminger, J and Leder-Luis, J (2022). Measuring Strategic Data Manipulation: Evidence from a World Bank Project. Preprint, submitted for publication. | ||||
Ensminger, J and Leder-Luis, J (2022). Detecting Fraud in Development Aid. Preprint. | ||||
Fang, G (2022). Investigating Hill’s question for some probability distributions. AIP Advances 12, 095004. DOI:10.1063/5.0100429. | ||||
Fang, G and Chen, Q (2019). Several common probability distributions obey Benford’s law. Physica A: Statistical Mechanics and its Applications, 123129 . DOI:10.1016/j.physa.2019.123129. | ||||
Fernández-Gracia, J and Lacasa, L (2018). Bipartisanship Breakdown, Functional Networks, and Forensic Analysis in Spanish 2015 and 2016 National Elections. Complexity 2018, Article ID 9684749. DOI:10.1155/2018/9684749. | ||||
Jiménez, R and Hidalgo, M (2014). Forensic Analysis of Venezuelan Elections during the Cha ́vez Presidency. PLOS ONE 9(6), pp. 1-18. DOI:10.1371/journal.pone.0100884. | ||||
Klimek, P, Yegorov, Y, Hanel, R and Thurner, S (2012). Statistical detection of systematic election irregularities. Proceedings of the National Academy of Science October 109(41), pp. 16469-16473. DOI:10.1073/pnas.1210722109. | ||||
Lacasa, L (2019). Newcomb–Benford law helps customs officers to detect fraud in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 11-13. DOI:10.1073/pnas.1819470116. | ||||
Lacasa, L and Fernández-Gracia, J (2019). Election Forensics: Quantitative methods for electoral fraud detection. Forensic Science International 294, pp. e19-e22. DOI:10.1016/j.forsciint.2018.11.010. | ||||
Leder-Luis, J (2020). The Economics of Fraud and Corruption. PhD Thesis, Massachusetts Institute of Technology. | ||||
Leemann, L and Bochsler, D (2014). A systematic approach to study electoral fraud. Electoral Studies, Vol. 35, Num. 0, pp. 33-47. ISSN/ISBN:0261-3794. DOI:10.1016/j.electstud.2014.03.005. | ||||
Mack, V (2016). The Fingerprints of Fraud: An In-depth Study of Election Forensics with Digit Tests. PhD Thesis, Universitat Konstanz. | ||||
Mack, V and Stoetzer, LF (2019). Election fraud, digit tests and how humans fabricate vote counts - An experimental approach. Electoral Studies 58, pp. 31-47 . DOI:10.1016/j.electstud.2018.12.002. | ||||
Mainusch, NM (2020). On Benford's law - Computing a Bayes factor with the Savage-Dickey method to quantify conformance of numerical data to Benford's law. Bachelor's Thesis, University of Osnabrueck, Institute of Cognitive Science, Germany. | ||||
Martínez JW, Martínez JC, Rincón DA, Salazar, DA, Castrillón JD, Gómez MDP, Suárez OF, Vélez JP, Valencia ÁM, Gómez S, Rincón ÁM, Idrovo ÁJ, Moreno-Montoya J, Prieto-Alvarado FE, Hurtado-Ortiz A and (2020). Benchmarking of public health surveillance of COVID-19 in Colombia: First semester. Biomedica : Revista del Instituto Nacional de Salud 40(Supl. 2), pp. 198-204. SPA | ||||
Mebane, WR Jr (2012). Second-digit Tests for Voters’ Election Strategies and Election Fraud. Prepared for presentation at the 2012 Annual Meeting of the Midwest Political Science Association, Chicago, April 12–15; last accessed Apr 11, 2019. | ||||
Mebane, WR Jr (2013). Election Forensics: The Meanings of Precinct Vote Counts’ Second Digits. Prepared for presentation at the 2013 Summer Meeting of the Political Methodology Society, University of Virginia, July 18–20. | ||||
Mebane, WR Jr (2013). Using Vote Counts’ Digits to Diagnose Strategies and Frauds: Russia. Prepared for presentation at the 2013 Annual Meeting of the American Political Science Asso- ciation, Chicago, August 29–September 1, 2013. | ||||
Mebane, WR Jr and Kent, T (2013). Second digit implications of voters’ strategies and mobilizations in the United States during the 2000s. Proceedings of the 2013 Annual Meeting of the Midwest Political Science Association, Chicago, IL, April 11–14. | ||||
Medzihorsky, J (2015). Election Fraud: A Latent Class Framework for Digit-Based Tests. Political Analysis 23(4), pp. 506-517. DOI:10.1093/pan/mpv021. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Parker, M (2020). Why do Biden's votes not follow Benford's Law?. Posted on youTube.com November 10, 2020; last accessed December 1, 2020. NOTE: Some information in this posting has been disputed. Please see https://arxiv.org/abs/2011.13015 for details. | ||||
Pierzgalski, M (2018). Odkrywanie fałszerstw wyborczych a „prawo” Benforda [Discovering Election Fraud and Benford’s “Law”]. Preprint, last accessed Apr 25, 2019. DOI:10.14746/ssp.2018.1.7. POL | ||||
Rauch, B, Göttsche, M, Brähler, G, Geidel, FA and Pietras, T (2014). Assessing the Accountability Reports of Political Parties in Germany using Benford's Law. Betriebswirtschaftliche Forschung und Praxis 66(2). | ||||
Rauch, B, Göttsche, M and Langenegger, S (2014). Detecting Problems in Military Expenditure Data Using Digital Analysis. Defence and Peace Economics 25(2), pp. 97-111. DOI:10.1080/10242694.2013.763438. | ||||
Riccioni, J and Cerqueti, R (2018). Regular paths in financial markets: Investigating the Benford’s law. Chaos, Solitons and Fractals 107, pp. 186-194. DOI:10.1016/j.chaos.2018.01.008. | ||||
Shanaev, S, Shuraeva, A and Ghimire, B (2020). Detecting Anomalies in the 2020 US Presidential Election Votes with Benford’s Law. SSRN Scholarly Paper Nr. 3728626. | ||||
Silva, LEdO and Figueiredo, D (2024). A novel approach to evaluate data integrity: evidence from COVID-19 in China. Brazilian Journal of Biometrics 42(1), pp. 78-87. DOI:10.28951/bjb.v42i1.659. | ||||
Tsagbey, S, de Carvalho, M and Page, GL (2017). All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing . The American Statistician, 71, pp. 231--235. DOI:10.1080/00031305.2017.1311282. |