Ausloos, M, Herteliu, C and Ileanu, B-V (2015). Breakdown of Benford’s law for birth data. Physica A: Statistical Mechanics and its Applications
Volume 419, pp. 736–745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041.
|
|
|
|
|
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013.
|
|
|
|
|
Bormashenko, E, Shulzinger, E, Whyman, G and Bormashenko, Y (2016). Benford’s law, its applicability and breakdown in the IR spectra of polymers. Physica A 444, pp. 524–529. DOI:10.1016/j.physa.2015.10.090.
|
|
|
|
|
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861.
|
|
|
|
|
Clippe, P and Ausloos, M (2012). Benford's law and Theil transform of financial data. Physica A: Statistical Mechanics and its Applications 391(24), pp. 6556–6567.
|
|
|
|
|
Cong, M, Li, C and Ma, B-Q (2019). First digit law from Laplace transform. Phys. Lett. A, 383(16), pp. 1836-1844. DOI:10.1016/j.physleta.2019.03.017
.
|
|
|
|
|
Cong, M and Ma, B-Q (2019). A Proof of First Digit Law from Laplace Transform. Chinese Physics Letters, 36, 7, 070201. DOI:10.1088/0256-307X/36/7/070201.
|
|
|
|
|
Fang, X, Miller, SJ, Sun, M and Verga, A (2023). Generalized Continuous and Discrete Stick Fragmentation and Benford’s Law. Preprint arXiv:2309.00766 [math.PR]; last accessed September 12, 2023.
|
|
|
|
|
Fang, X, Miller, SJ, Sun, M and Verga, A (2024). Benford’s Law and Random Integer Decomposition with Congruence Stopping Condition. Preprint.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2022). Reliability of COVID-19 data and government policies. Preprint arXiv:2208.11226 [physics.soc-ph]; last accessed August 31, 2022.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2023). COVID-19 data, mitigation policies and Newcomb–Benford law. Chaos, Solitons and Fractals 174 p. 113814. DOI:10.1016/j.chaos.2023.113814.
|
|
|
|
|
Jiang, H, Shen, J-J and Zhao, Y-M (2011). Benford’s Law in nuclear structure physics. Chinese Physics Letters, 28(3), pp. 32101–32104. DOI:10.1088/0256-307X/28/3/032101.
|
|
|
|
|
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8.
|
|
|
|
|
Kossovsky, AE (2014). Arithmetical Tugs of War and Benford's Law. Preprint arXiv:1410.2174 [math.ST]; last accessed October 19, 2020.
|
|
|
|
|
Kossovsky, AE (2015). Random Consolidations and Fragmentations Cycles Lead to Benford' Law. Preprint arXiv:1505.05235 [math.ST]; last accessed October 19, 2020.
|
|
|
|
|
Kossovsky, AE (2016). Exponential Growth Series and Benford's Law. Preprint arXiv:1606.04425 [math.ST]; last accessed October 19, 2020.
|
|
|
|
|
Lai, H-Y and Wei, J-J (2024). First Digit Distributions of Gamma-Ray Bursts. Preprint arXiv:2401.10609 [astro-ph.HE];last accessed January 25, 2024.
|
|
|
|
|
Li, F, Han, S, Zhang, H, Ding, J, Zhang, J and Wu, J (2019). Application of Benford’s law in Data Analysis. Journal of Physics: Conference Series 1168, pp. 032133. DOI:10.1088/1742-6596/1168/3/032133.
|
|
|
|
|
Mamidipaka, P and Desai, S (2022). Do Pulsar and Fast Radio Burst dispersion measures obey Benford's law?. Preprint arXiv:2207.09696 [astro-ph.HE]; last accessedAugust 8, 2022. DOI:10.48550/arXiv.2207.09696
.
|
|
|
|
|
Mamidipaka, P and Desai, S (2023). Do pulsar and Fast Radio Burst dispersion measures obey Benford's law?. Astroparticle Physics 144, p. 102761
. DOI:10.1016/j.astropartphys.2022.102761.
|
|
|
|
|
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1.
|
|
|
|
|
Mir, TA (2011). Law of the leading digits and the ideological struggle for numbers. physics arXiv:1104.3948. DOI:10.1016/j.physa.2011.09.001.
|
|
|
|
|
Mir, TA (2012). The law of the leading digits and the world religions. Physica A: Statistical Mechanics and its Applications, 391 (2012), pp. 792-798. DOI:10.1016/j.physa.2011.09.001.
|
|
|
|
|
Mir, TA, Darzi, MA, Ishtiaq, PM and Mufti, S (2023). Benford’s law: an application to sunspot data. Preprint posted on Research Square. DOI:10.21203/rs.3.rs-3372099/v1.
|
|
|
|
|
Nebel, J-C and Pezzulli, S (2012). Distribution of Human Genes Observes Zipf's Law. Kingston University Research & Innovation Reports (KURIR), Vol. 8, 2012. ISSN/ISBN:1749-5652.
|
|
|
|
|
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094.
|
|
|
|
|
Pain, J-C and Croset, P (2023). Ideas and Tools for Error Detection in Opacity Databases. Atoms 11(2), p. 27. DOI:10.3390/atoms11020027.
|
|
|
|
|
Pain, J-C and Ralchenko, Y (2024). Benford’s law in atomic spectra and opacity databases. Journal of Quantitative Spectroscopy and Radiative Transfer 322. DOI:10.1016/j.jqsrt.2024.109010.
|
|
|
|
|
Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055.
|
|
|
|
|
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021.
|
|
|
|
|
Shao, L and Ma, BQ (2010). First-digit law in nonextensive statistics. Physical Review E 82, 041110. DOI:10.1103/PhysRevE.82.041110.
|
|
|
|
|
Silva, LEdO and Figueiredo, D (2024). A novel approach to evaluate data integrity: evidence from COVID-19 in China. Brazilian Journal of Biometrics 42(1), pp. 78-87. DOI:10.28951/bjb.v42i1.659.
|
|
|
|
|
Wang, L and Ma, B-Q (2023). A concise proof of Benford’s law. Fundamental Research
. DOI:10.1016/j.fmre.2023.01.002.
|
|
|
|
|
Whyman, G (2021). Origin, Alternative Expressions of Newcomb-Benford Law and Deviations of Digit Frequencies. Applied Mathematics 12, pp. 578-586. ISSN/ISBN:2152-7385. DOI:10.4236/am.2021.127041.
|
|
|
|
|
Whyman, G, Ohtori, N, Shulzinger, E and Bormashenko, E (2016). Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?. Physica A: Statistical Mechanics and its Applications
Volume 461, pp. 595-601. DOI:10.1016/j.physa.2016.06.054.
|
|
|
|
|
Whyman, G, Shulzinger, E and Bormashenko, E (2016). Intuitive considerations clarifying the origin and applicability of the Benford law. Results in Physics Volume 6, pp. 3-6
. DOI:10.1016/j.rinp.2015.11.010.
|
|
|
|
|
Yang, L and Fu, Z (2017). Out-phased decadal precipitation regime shift in China and the United States. Theor Appl Climatol (2017) 130, pp. 535–544. DOI:10.1007/s00704-016-1907-6.
|
|
|
|
|