Ausloos, M, Herteliu, C and Ileanu, B-V (2015). Breakdown of Benford’s law for birth data. Physica A: Statistical Mechanics and its Applications
Volume 419, pp. 736–745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041.
|
|
|
|
|
Berger, A (2005). Benford’s Law in power-like dynamical systems. Stochastics and Dynamics 5, pp. 587-607. ISSN/ISBN:0219-4937. DOI:10.1142/S0219493705001602.
|
|
|
|
|
Berger, A (2005). Multi-dimensional dynamical systems and Benford's law. Discrete and Continuous Dynamical Systems 13(1), pp. 219-237. ISSN/ISBN:1078-0947. DOI:10.3934/dcds.2005.13.219.
|
|
|
|
|
Berger, A (2005). Dynamics and digits: on the ubiquity of Benford’s law. In: F. Dumortier, H. Broer, J. Mahwin, A. Vanderbauwhede, S. Verduyn Lunel (eds): Proceedings of Equadiff 2003. World Scientific, pp. 693-695. DOI:10.1142/9789812702067_0115 .
|
|
|
|
|
Berger, A (2011). Some dynamical properties of Benford sequences. Journal of Difference Equations and Applications 17(2), pp. 137-159. DOI:10.1080/10236198.2010.549012.
|
|
|
|
|
Berger, A (2015). Most linear flows on ℝ^d are Benford
. Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016.
|
|
|
|
|
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5.
|
|
|
|
|
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.
|
|
|
|
|
Berger, A and Siegmund, S (2007). On the distribution of mantissae in nonautonomous difference equations. Journal of Difference Equations and Applications 13(8-9), pp. 829-845. ISSN/ISBN:1023-6198. DOI:10.1080/10236190701388039.
|
|
|
|
|
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861.
|
|
|
|
|
Canessa, E (2003). Theory of analogous force on number sets. Physica A 328, pp. 44-52. DOI:10.1016/S0378-4371(03)00526-0.
|
|
|
|
|
da Silva, AJ, Floquet, S, Santos, DOC and Lima, RF (2020). On the validation of the Newcomb-Benford Law and the Weibull distribution in neuromuscular transmission. Physica A 553, 1 September 2020, 124606. DOI:10.1016/j.physa.2020.124606.
|
|
|
|
|
Eliazar, II (2013). Benford's Law: A Poisson Perspective. Physica A 392(16) pp. 3360–3373. DOI:10.1016/j.physa.2013.03.057.
|
|
|
|
|
Pocheau, A (2006). The significant digit law: a paradigm of statistical scale symmetries . European Physical Journal B 49(4), pp. 491-511. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2006-00084-2.
|
|
|
|
|
Seenivasan, P, Easwaran, S, Sridhar, S and Sinha, S (2016). Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models. Frontiers in Physiology 6, p. 390. DOI:10.3389/fphys.2015.00390.
|
|
|
|
|
Shao, L and Ma, BQ (2009). First Digit Distribution of Hadron full width. Modern Physics Letters A, 24(40), 3275-3282. ISSN/ISBN:0217-7323. DOI:10.1142/S0217732309031223.
|
|
|
|
|
Wang, L and Ma, B-Q (2023). A concise proof of Benford’s law. Fundamental Research
. DOI:10.1016/j.fmre.2023.01.002.
|
|
|
|
|