This work is cited by the following items of the Benford Online Bibliography:
Cerqueti, R and Maggi, M (2021). Data validity and statistical conformity with Benford’s Law. Chaos, Solitons & Fractals 144, p. 110740 . DOI:10.1016/j.chaos.2021.110740. | ||||
Costa, JI, Henriques, DBB, Melo, S and dos Santos, J (2012). Análise de métodos contabilométricos para determinação de conformidade da Lei Newcomb-Benford aplicados à auditoria contábil. [An analysis of Benford’s law conformity contabilometric methods applied to audit accounting] . Revista Gestão Pública: Práticas e Desafios, Recife, v. III, n. 6, pp. 292-314. POR | ||||
Delahaye, J-P (1999). L'étonnante loi de Benford. Pour la Science No. 351, pp. 90-95. FRE | ||||
Ducharme, RG, Kaci, S and Vovor-Dassu ,C (2020). Smooths Tests of Goodness-of-fit for the Newcomb-Benford distribution. Preprint: arXiv:2003.00520v1 [math.ST]. Published in Mathématiques appliquées et stochastiques, 3(1). FRE | ||||
Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 49-63. ISSN/ISBN:0236-5294. DOI:10.1007/s10474-012-0244-1. | ||||
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE | ||||
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE | ||||
Jasak, Z (2009). Benford's Law and First Letters. Unpublished manuscript. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Jasak, Z and Banjanovic-Mehmedovic, L (2008). Detecting Anomalies by Benford's Law. In Proceedings of IEEE International Symposium on Signal Processing and Information Technology, 2008. ISSPIT 2008, pp. 453-458 . ISSN/ISBN:978-1-4244-3554-8. DOI:10.1109/ISSPIT.2008.4775660. | ||||
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. | ||||
Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 45-58. ISSN/ISBN:0065-1036. DOI:10.4064/aa163-1-4. | ||||
Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon . International Journal of Number Theory 11:705, pp. 705--719. DOI:10.1142/S1793042115500384. | ||||
Posch, PN and Kreiner, WA (2005). A general approach to digital analysis exemplified by stock market indices. Online unpublished manuscript; link broken; copy available upon request. | ||||
Vovor-Dassu, KC (2021). Tests d'adéquation à la loi de Newcomb-Benford comme outils de détection de fraudes. PhD Thesis L’Universite de Montpellier. DOI:10.13140/RG.2.2.12559.25764. FRE |