This work is cited by the following items of the Benford Online Bibliography:
Baumeister, J and Macedo, TG (2011). Von den Zufallszahlen und ihrem Gebrauch. Stand: 21, November 2011. GER | ||||
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Berger, A (2005). Benford’s Law in power-like dynamical systems. Stochastics and Dynamics 5, pp. 587-607. ISSN/ISBN:0219-4937. DOI:10.1142/S0219493705001602. | ||||
Berger, A (2005). Multi-dimensional dynamical systems and Benford's law. Discrete and Continuous Dynamical Systems 13(1), pp. 219-237. ISSN/ISBN:1078-0947. DOI:10.3934/dcds.2005.13.219. | ||||
Berger, A (2005). Dynamics and digits: on the ubiquity of Benford’s law. In: F. Dumortier, H. Broer, J. Mahwin, A. Vanderbauwhede, S. Verduyn Lunel (eds): Proceedings of Equadiff 2003. World Scientific, pp. 693-695. DOI:10.1142/9789812702067_0115 . | ||||
Berger, A (2011). Some dynamical properties of Benford sequences. Journal of Difference Equations and Applications 17(2), pp. 137-159. DOI:10.1080/10236198.2010.549012. | ||||
Berger, A and Hill, TP (2007). Newton’s method obeys Benford’s law. American Mathematical Monthly 114 (7), pp. 588-601. ISSN/ISBN:0002-9890. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Berger, A, Hill, TP, Kaynar, B and Ridder, A (2011). Finite-state Markov Chains Obey Benford's Law. SIAM Journal of Matrix Analysis and Applications 32(3), pp. 665-684. DOI:10.1137/100789890. | ||||
Berger, A and Siegmund, S (2007). On the distribution of mantissae in nonautonomous difference equations. Journal of Difference Equations and Applications 13(8-9), pp. 829-845. ISSN/ISBN:1023-6198. DOI:10.1080/10236190701388039. | ||||
Bonache, A, Moris, K and Maurice, J (2009). Risque associé à l'utilisation de la loi de Benford pour détecter les fraudes dans le secteur de la mode [Risk of Reviews based on Benford Law in the Fashion Sector]. Munich Personal RePEc Archive (MPRA) Paper No. 15352, posted 26 May 2009. FRE | ||||
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861. | ||||
Chen, E, Park, PS and Swaminathan, AA (2016). On logarithmically Benford Sequences. Proc. Amer. Math. Soc. 144, pp. 4599-4608. DOI:10.1090/proc/13112 . | ||||
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019. | ||||
Cong, M, Li, C and Ma, B-Q (2019). First digit law from Laplace transform. Phys. Lett. A, 383(16), pp. 1836-1844. DOI:10.1016/j.physleta.2019.03.017 . | ||||
Cong, M and Ma, B-Q (2019). A Proof of First Digit Law from Laplace Transform. Chinese Physics Letters, 36, 7, 070201. DOI:10.1088/0256-307X/36/7/070201. | ||||
Corazza, M, Ellero, A and Zorzi, A (2008). What sequences obey Benford's law?. Working Paper n. 185/2008, November 2008, Department of Applied Mathematics, University of Venice. ISSN/ISBN:1828-6887. | ||||
da Silva, ASCD (2013). The application of Benford’s Law in detecting accounting fraud in the Financial Sector. Masters Thesis, Lisboa School of Economics & Management. | ||||
Farris, M, Luntzlara, N, Miller, SJ, Shao, L and Wang, M (2021). Recurrence Relations and Benford's Law. Statistical Methods & Applications 30, pp. 797–817. DOI:10.1007/s10260-020-00547-1. | ||||
Farris, M, Luntzlara, N, Miller, SJ, Zhao, L and Wang, M (2019). Recurrence Relations and Benford’s Law. Preprint arXiv:1911.09238 [math.PR]; last accessed December 8, 2019. | ||||
Fox, RF and Hill, TP (2014). Hubble’s Law Implies Benford’s Law for Distances to Stars. Prerprint Physics arXiv; posted on December 4, 2014. | ||||
Gámez, RAM and Rivera, CEA (2009). Ley de Benford y sus aplicaciones. Undergraduate Thesis, . SPA | ||||
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE | ||||
Gauvrit, N and Delahaye, J-P (2009). Scatter and regularity imply Benford's Law ... and more. Preprint arXiv: 0910.1359 [math.PR]; last accessed July 18, 2018 . | ||||
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE | ||||
Gauvrit, N and Delahaye, J-P (2011). Scatter and Regularity Implies Benford's Law... and More. in H. Zenil (Ed.) Randomness Through Complexity, Singapore, World Scientific, 53-69. ISSN/ISBN:13978-981-4327-74-9. | ||||
Gonzalez-Garcia, J and Pastor, G (2009). Benford’s Law and Macroeconomic Data Quality. International Monetary Fund Working Paper WP/09/10, Statistics Department, January 2009. | ||||
Hill, TP and Fox, RF (2016). Hubble’s Law Implies Benford’s Law for Distances to Galaxies. Journal of Astrophysics and Astronomy 37(1), pp. 1-8. ISSN/ISBN:0973-7758. DOI:10.1007/s12036-016-9373-1. | ||||
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. | ||||
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. | ||||
Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014. | ||||
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60. | ||||
Janvresse, E and de la Rue, T (2004). From Uniform Distributions to Benford’s Law. Journal of Applied Probability 41(4), pp. 1203-1210. ISSN/ISBN:0021-9002. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Jolissaint, P (2009). Loi de Benford, relations de récurrence et suites équidistribuées II. Elem. Math. 64 (1), pp. 21-36. FRE | ||||
Kontorovich, AV and Miller, SJ (2005). Benford's Law, Values of L-functions and the 3x+ 1 Problem. Acta Arithmetica 120(3), pp. 269-297. ISSN/ISBN:0065-1036. DOI:10.4064/aa120-3-4. | ||||
Kowalski, JM (2016). Few more Comments on Benford’s Law. arXiv:1612.04200 [math.HO], last accessed February 16, 2017. | ||||
Lagarias, JC and Soundararajan, K (2006). Benford's law for the 3x+1 function. Journal of the London Mathematical Society 74, pp. 289-303. ISSN/ISBN:0024-6107. DOI:10.1112/S0024610706023131. | ||||
Lolbert, T (2006). Digital Analysis: Theory and Applications in Auditing. Hungarian Statistical Review 84, Special number 10, p. 148. ISSN/ISBN:0039 0690. | ||||
Lolbert, T (2007). Statisztikai eljárások alkalmazása az ellenőrzésben (Applications of statistical methods in monitoring). PhD thesis, Corvinus University, Budapest, Hungary. HUN | ||||
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. | ||||
Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 45-58. ISSN/ISBN:0065-1036. DOI:10.4064/aa163-1-4. | ||||
Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon . International Journal of Number Theory 11:705, pp. 705--719. DOI:10.1142/S1793042115500384. | ||||
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006. | ||||
Miller, SJ and Nigrini, MJ (2008). The Modulo 1 Central Limit Theorem and Benford's Law for Products. International Journal of Algebra 2(3), pp. 119 - 130. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Miller, SJ and Takloo-Bighash, R (2006). An invitation to modern number theory. Princeton University Press. ISSN/ISBN:978-0691120607. | ||||
Miller, SJ and Takloo-Bighash, R (2007). Introduction to Random Matrix Theory. In: An Invitation to Modern Number Theory, Princeton University Press. ISSN/ISBN:9780691120607. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Nebel, J-C and Pezzulli, S (2012). Distribution of Human Genes Observes Zipf's Law. Kingston University Research & Innovation Reports (KURIR), Vol. 8, 2012. ISSN/ISBN:1749-5652. | ||||
Nigrini, MJ and Miller, SJ (2009). Data Diagnostics Using Second-Order Tests of Benford's Law. Auditing: A Journal of Practice & Theory 28(2), pp. 305-324. DOI:10.2308/aud.2009.28.2.305 . | ||||
Pérez-González, F, Heileman, G and Abdallah, CT (2007). A generalization of Benford’s Law and its application to images. European Control Conference’2007, Kos, Greece, July 2007, pp. 3613 - 3619. ISSN/ISBN:9783952417386. | ||||
Phatarfod, R (2013). Some aspects of the Benford law of leading significant digits. The Mathematical Scientist, Applied Probability Trust, 38 (2), pp 73-85. ISSN/ISBN:03123685. | ||||
Posch, PN (2005). Ziffernanalyse in Theorie und Praxis. Testverfahren zur Fälschungsaufspürung mit Benfords Gesetz. Diploma thesis, Universität Bonn, Germany, 2003. Published by Shaker Verlag, Aachen. GER | ||||
Posch, PN (2008). A Survey on Sequences and Distribution Functions satisfying the First-Digit-Law. Journal of Statistics & Management Systems 11(1), pp. 1-19. DOI:10.1080/09720510.2008.10701294. | ||||
Posch, PN (2010). Ziffernanalyse mit dem Newcomb-Benford Gesetz in Theorie und Praxis. VEW Verlag Europäische Wirtschaft: Munich 2nd edition. GER | ||||
Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055. | ||||
Qin, L, Han, S, Xing, L, Zhang, Jia, Zhang, Jin, Yang, R and Wu, J (2019). Application Research of Benford's Law in Testing Agrometeorological Data. IOP Conf. Series: Earth and Environmental Science 310, 052030 . DOI:10.1088/1755-1315/310/5/052030. | ||||
Ravikumar, B (2008). The Benford-Newcomb Distribution and Unambiguous Context-Free Languages. International Journal of Foundations of Computer Science 19(3), pp. 717-727. ISSN/ISBN:0129-0541. DOI:10.1142/S0129054108005905. | ||||
Ravikumar, B (2009). A simple multiplication game and its analysis. Accepted for publication in the International Journal of Combinatorial Number Theory. | ||||
Schürger, K (2008). Extensions of Black-Scholes processes and Benford's law. Stochastic Processes and their Applications 118(7), 1219-1243. ISSN/ISBN:0304-4149. DOI:10.1016/j.spa.2007.07.017. | ||||
Shao, L and Ma, BQ (2009). First Digit Distribution of Hadron full width. Modern Physics Letters A, 24(40), 3275-3282. ISSN/ISBN:0217-7323. DOI:10.1142/S0217732309031223. | ||||
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003. | ||||
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. | ||||
Toledo, PA, Riquelme, SR and Campos, JA (2015). Earthquake source parameters that display the first digit phenomenon. Nonlin. Processes Geophys., 22(5), pp. 625–632. DOI:10.5194/npg-22-625-2015. | ||||
Torres, J, Fernandez, S, Gamero, A and Sola, A (2007). How do numbers begin? (The first digit law). European Journal of Physics 28(3), L17-L25. ISSN/ISBN:0143-0807. DOI:10.1088/0143-0807/28/3/N04. |