This work is cited by the following items of the Benford Online Bibliography:
Balado, F and Sylvestre, G (2023). General Distributions of Number Representation Elements. Preprint arXiv:2301.10547 [math.PR]; last accessed April 29, 2023. | ||||
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Best, A, Dynes, P, Edelsbrunner, X, McDonald, B, Miller, SJ, Tor, K, Turnage-Butterbaugh, C and Weinstein, M (2014). Benford Behavior of Zeckendorf Decompositions. Fibonacci Quarterly 52(5), pp. 35–46. | ||||
Best, A, Dynes, P, Edelsbrunner, X, McDonald, B, Miller, SJ, Tor, K, Turnage-Butterbaugh, C and Weinstein, M (2017). Benford Behavior of Generalized Zeckendorf Decompositions. In: Nathanson M. (eds) Combinatorial and Additive Number Theory II. CANT 2015, CANT 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. DOI:10.1007/978-3-319-68032-3_3. | ||||
Betti, L, Durmić, I, McDonald, Z, Miller, JB and Miller, SJ (2023). Benfordness of Measurements Resulting from Box Fragmentation. Preprint arXiv:2304.08335 [math.PR]; last accessed April 29, 2023. | ||||
Bi, Z, Durmić, I and Miller, SJ (2022). Benfordness of the Generalized Gamma Distribution. Preprint arXiv:2201.10514 [math.PR]; last accessed January 31, 2022. Published in The PUMP Journal of Undergraduate Research 5, pp. 89–104. | ||||
Corazza, M, Ellero, A and Zorzi, A (2008). What sequences obey Benford's law?. Working Paper n. 185/2008, November 2008, Department of Applied Mathematics, University of Venice. ISSN/ISBN:1828-6887. | ||||
Durmić, I (2022). Benford Behavior of a Higher Dimensional Fragmentation Processes. Undergraduate thesis, Williams College, Williamstown, Massachusetts. | ||||
Durmić, I and Miller SJ (2023). Benford Behavior of a Higher-Dimensional Fragmentation Process. Preprint arXiv:2308.07404 [math.PR]; last accessed August 24, 2023. | ||||
Fang, X, Miller, SJ, Sun, M and Verga, A (2023). Generalized Continuous and Discrete Stick Fragmentation and Benford’s Law. Preprint arXiv:2309.00766 [math.PR]; last accessed September 12, 2023. | ||||
Fang, X, Miller, SJ, Sun, M and Verga, A (2024). Benford’s Law and Random Integer Decomposition with Congruence Stopping Condition. Preprint. | ||||
Farris, M, Luntzlara, N, Miller, SJ, Shao, L and Wang, M (2021). Recurrence Relations and Benford's Law. Statistical Methods & Applications 30, pp. 797–817. DOI:10.1007/s10260-020-00547-1. | ||||
Farris, M, Luntzlara, N, Miller, SJ, Zhao, L and Wang, M (2019). Recurrence Relations and Benford’s Law. Preprint arXiv:1911.09238 [math.PR]; last accessed December 8, 2019. | ||||
Gambini, A, Scarpello, GM and Ritelli, D (2012). Probability of digits by dividing random numbers: A ψ and ζ functions approach. Expositiones Mathematicae, Vol. 30, No. 3, pp. 223–238. DOI:10.1016/j.exmath.2012.03.001. | ||||
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. | ||||
Iafrate, JR (2014). Benford’s Law and Power Law Behavior in Fragmentation Processes. Undergraduate Honors Thesis, Williams College, Williamstown, MA. | ||||
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. | ||||
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Zorzi, A (2011). Benford's law and pi. The Mathematical Gazette, vol. 95, no. 533, July 2011, pp. 264-266. |