This work is cited by the following items of the Benford Online Bibliography:
Anderson, KM, Dayaratna, K, Gonshorowski, D and Miller, SJ (2022). A New Benford Test for Clustered Data with Applications to American Elections. Stats 5(3), pp. 841–855. DOI:10.3390/stats5030049 . | ||||
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association. DOI:10.1080/01621459.2021.1891927. | ||||
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. | ||||
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. | ||||
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Berger, A and Siegmund, S (2007). On the distribution of mantissae in nonautonomous difference equations. Journal of Difference Equations and Applications 13(8-9), pp. 829-845. ISSN/ISBN:1023-6198. DOI:10.1080/10236190701388039. | ||||
Betti, L, Durmić, I, McDonald, Z, Miller, JB and Miller, SJ (2023). Benfordness of Measurements Resulting from Box Fragmentation. Preprint arXiv:2304.08335 [math.PR]; last accessed April 29, 2023. | ||||
Bi, Z, Durmić, I and Miller, SJ (2022). Benfordness of the Generalized Gamma Distribution. Preprint arXiv:2201.10514 [math.PR]; last accessed January 31, 2022. Published in The PUMP Journal of Undergraduate Research 5, pp. 89–104. | ||||
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358. | ||||
Durmić, I (2022). Benford Behavior of a Higher Dimensional Fragmentation Processes. Undergraduate thesis, Williams College, Williamstown, Massachusetts. | ||||
Durmić, I and Miller SJ (2023). Benford Behavior of a Higher-Dimensional Fragmentation Process. Preprint arXiv:2308.07404 [math.PR]; last accessed August 24, 2023. | ||||
Fang, X, Miller, SJ, Sun, M and Verga, A (2023). Generalized Continuous and Discrete Stick Fragmentation and Benford’s Law. Preprint arXiv:2309.00766 [math.PR]; last accessed September 12, 2023. | ||||
Fang, X, Miller, SJ, Sun, M and Verga, A (2024). Benford’s Law and Random Integer Decomposition with Congruence Stopping Condition. Preprint. | ||||
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541. | ||||
Gámez, RAM and Rivera, CEA (2009). Ley de Benford y sus aplicaciones. Undergraduate Thesis, . SPA | ||||
Glogić, E and Jasak, Z (2021). Benford's Law in Forensic Analysis of Registered Turnover. Journal of Forensic Accounting Profession 1(1), pp. 50-60. DOI:10.2478/jfap-2021-0004. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Kak, S (2023). Noninteger dimensionality, nonlocal noise and self-decoherence. Preprint posted on TechRxiv; last accessed June 14, 2023. DOI:10.36227/techrxiv.22790663.v1 . | ||||
Lemons, DS, Lemons, N and Peter, W (2021). First Digit Oscillations. Stats 4(3), pp. 595-601. DOI:10.3390/stats4030035. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Nigrini, MJ and Miller, SJ (2009). Data Diagnostics Using Second-Order Tests of Benford's Law. Auditing: A Journal of Practice & Theory 28(2), pp. 305-324. DOI:10.2308/aud.2009.28.2.305 . | ||||
O'Keefe, J and Yom, C (2017). Offsite Detection of Insider Abuse and Bank Fraud among U.S. Failed Banks 1989-2015. Available at SSRN: https://ssrn.com/abstract=3013174. DOI:10.2139/ssrn.3013174. | ||||
Renaldo, N, Hutahuruk, MB and Putri, IY (2022). Forensic Accounting: The Use of Benford's Law to Evaluate Indications of Fraud . Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos (REDECA) 9(e57343), pp. 1-15. DOI:10.23925/2446-9513.2022v9id57343. | ||||
Richter, R (2015). Em busca de transparência: a Lei de Benford aplicada às despesas eleitorais. Monografia (Bacharelado em Ciências Econômicas)- Universidade de Brasília, Brasília. POR | ||||
Shulzinger, E, Legchenkova, I and Bormashenko, E (2018). Co-occurrence of the Benford-like and Zipf Laws Arising from the Texts Representing Human and Artificial Languages. Preprint arXiv:1803.03667 [cs.CL]; last accessed April 6, 2019. |