This work is cited by the following items of the Benford Online Bibliography:
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Betti, L, Durmić, I, McDonald, Z, Miller, JB and Miller, SJ (2023). Benfordness of Measurements Resulting from Box Fragmentation. Preprint arXiv:2304.08335 [math.PR]; last accessed April 29, 2023. | ||||
Bi, Z, Durmić, I and Miller, SJ (2022). Benfordness of the Generalized Gamma Distribution. Preprint arXiv:2201.10514 [math.PR]; last accessed January 31, 2022. Published in The PUMP Journal of Undergraduate Research 5, pp. 89–104. | ||||
Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2017). Leading Digits of Mersenne Numbers. Preprint in arXiv:1712.04425 [math.NT]; last accessed October 23, 2018. | ||||
Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2021). Leading digits of Mersenne numbers. Experimental Mathematics 30(3), pp. 405–421. DOI:10.1080/10586458.2018.1551162. | ||||
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019. | ||||
Durmić, I (2022). Benford Behavior of a Higher Dimensional Fragmentation Processes. Undergraduate thesis, Williams College, Williamstown, Massachusetts. | ||||
Durmić, I and Miller SJ (2023). Benford Behavior of a Higher-Dimensional Fragmentation Process. Preprint arXiv:2308.07404 [math.PR]; last accessed August 24, 2023. | ||||
Fang, X, Miller, SJ, Sun, M and Verga, A (2023). Generalized Continuous and Discrete Stick Fragmentation and Benford’s Law. Preprint arXiv:2309.00766 [math.PR]; last accessed September 12, 2023. | ||||
Fang, X, Miller, SJ, Sun, M and Verga, A (2024). Benford’s Law and Random Integer Decomposition with Congruence Stopping Condition. Preprint. | ||||
Flenghi, R and Jourdain, B (2023). Convergence to the uniform distribution of vectors of partial sums modulo one with a common factor. Preprint arXiv:2308.01874 [math.PR]; last accessed August 24, 2023. | ||||
Galati, L (2020). Do Municipally Owned Utilities Round Earnings Before Elections? An Application of the Benford's Law. Unpublished Master's Dissertation, University of Molise. DOI:10.13140/RG.2.2.36384.51204. | ||||
Gámez, RAM and Rivera, CEA (2009). Ley de Benford y sus aplicaciones. Undergraduate Thesis, . SPA | ||||
Giuliano, R (2011). Weak convergence of sequences from fractional parts of random variables and applications. Theory of Probability and Mathematical Statistics 83, pp. 59-69. DOI:10.1090/S0094-9000-2012-00841-7 . | ||||
Giuliano, R and Janvresse, E (2010). A unifying probabilistic interpretation of Benford's Law. Uniform Distribution Theory 5(2), pp. 169-182. ISSN/ISBN:1336-913X. | ||||
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. | ||||
Isaković-Kaplan, S, Demirović, L and Proho, M (2021). Benford’s Law in Forensic Analysis of Income Statements of Economic Entities in Bosnia and Herzegovina. Croatian Economic Survey 23(1), pp. 31-61. DOI:10.15179/ces.23.1.2. | ||||
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60. | ||||
Janvresse, É (2012). Quelques contributions aux probabilités eta la théorie ergodique. Document de synthèse présenté pour l’Habilitation à Diriger des Recherches, l’université de Rouen. FRE | ||||
Jing, J (2013). Benford’s Law and Stick Decomposition. Undergraduate thesis, Williams College, Williamstown, Massachusetts . | ||||
Máté, D, Sadaf, R, Tarnóczi, T and Fenyves, V (2017). Fraud Detection by Testing the Conformity to Benford’s Law in the Case of Wholesale Enterprises. Polish Journal Of Management Studies, 16(1), pp.115-126. DOI:10.17512/pjms.2017.16.1.10 . | ||||
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Nigrini, MJ and Miller, SJ (2009). Data Diagnostics Using Second-Order Tests of Benford's Law. Auditing: A Journal of Practice & Theory 28(2), pp. 305-324. DOI:10.2308/aud.2009.28.2.305 . | ||||
Schräpler, J-P (2010). Benford's Law as an instrument for fraud detection in surveys using the data of the Socio-Economic Panel (SOEP). Socio-Economic Panel (SOEP) paper No. 273, March 2, 2010. DOI:10.2139/ssrn.1562574. | ||||
Schräpler, J-P (2011). Benford's Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 231(5-6). DOI:10.1515/jbnst-2011-5-609. | ||||
Szewczak, ZS (2010). A limit theorem for random sums modulo 1. Statistics & Probability Letters 80(9) pp. 747-751. DOI:10.1016/j.spl.2010.01.005. |