Cross Reference Up

Lagarias, JC and Soundararajan, K (2006). Benford's law for the 3x+1 function. Journal of the London Mathematical Society 74, pp. 289-303.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. View Complete Reference Online information Works that this work references Works that reference this work
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Chandee, V, Li, X, Pollack, P and Roy, AS (2022). On Benford's Law for Multiplicative Functions. Preprint arXiv:2203.13117v2 [math.NT]; last accessed May 30, 2022. View Complete Reference Online information Works that this work references Works that reference this work
Chen, E, Park, PS and Swaminathan, AA (2016). On logarithmically Benford Sequences. Proc. Amer. Math. Soc. 144, pp. 4599-4608. DOI:10.1090/proc/13112 . View Complete Reference Online information Works that this work references No Bibliography works reference this work
Gámez, RAM and Rivera, CEA (2009). Ley de Benford y sus aplicaciones. Undergraduate Thesis, . SPA View Complete Reference Online information Works that this work references Works that reference this work
Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014. View Complete Reference Online information Works that this work references Works that reference this work
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60. View Complete Reference Online information Works that this work references Works that reference this work
Kontorovich, AV and Miller, SJ (2005). Benford's Law, Values of L-functions and the 3x+ 1 Problem. Acta Arithmetica 120(3), pp. 269-297. ISSN/ISBN:0065-1036. DOI:10.4064/aa120-3-4. View Complete Reference Online information Works that this work references Works that reference this work
Manack, C and Miller, SJ (2015). Leading digit laws on linear Lie groups. Research in Number Theory 1:22. DOI:10.1007/s40993-015-0024-4. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Nigrini, MJ (2008). The Modulo 1 Central Limit Theorem and Benford's Law for Products. International Journal of Algebra 2(3), pp. 119 - 130. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Takloo-Bighash, R (2006). An invitation to modern number theory. Princeton University Press. ISSN/ISBN:978-0691120607. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ and Takloo-Bighash, R (2007). Introduction to Random Matrix Theory. In: An Invitation to Modern Number Theory, Princeton University Press. ISSN/ISBN:9780691120607. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ and Miller, SJ (2007). Benford’s Law Applied to Hydrology Data—Results and Relevance to Other Geophysical Data. Mathematical Geology 39(5), 469-490. ISSN/ISBN:0882-8121. DOI:10.1007/s11004-007-9109-5. View Complete Reference Online information Works that this work references Works that reference this work