This work is cited by the following items of the Benford Online Bibliography:
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861. | ||||
Jafaridargiri, A and Rostami, M (2021). A Survey on Benford Law in Tehran Stock Exchange . Management Research in Iran 17(1), pp. 95-110. PER | ||||
Kreiner, WA (2022). First Digits’ Shannon Entropy. Entropy 24(10), pp. 1413. DOI:10.3390/e24101413. | ||||
Kreiner, WA (2022). Non-Newcomb-Benford Distributions. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. DOI:10.18725/OPARU-46416. | ||||
Posch, PN and Kreiner, WA (2005). A general approach to digital analysis exemplified by stock market indices. Online unpublished manuscript; link broken; copy available upon request. | ||||
Posch, PN and Kreiner, WA (2006). Analysing digits for portfolio formation and index tracking. Journal of Asset Management 7(1), pp. 69-80. DOI:10.1057/palgrave.jam.2240203. | ||||
Ryder, P (2009). The Relationship Between the Newcomb-Benford Law and the Distribution of Rational Numbers. Zeitschrift für Naturforschung 64a, pp. 615-617. | ||||
Ryder, P (2009). Multiple origins of the Newcomb-Benford law: rational numbers, exponential growth and random fragmentation. Staats- und Universitätsbibliothek Bremen, Germany. | ||||
Winter, C, Schneider, M and Yannikos, Y (2012). Model-Based Digit Analysis for Fraud Detection overcomes Limitations of Benford Analysis. Availability, Reliability and Security (ARES 2012), Seventh International Conference, August 20–24, 2012, Prague, Czech Republic. IEEE CS volume E4775, pages 255–261. IEEE Computer Society. ISSN/ISBN:978-1-4673-2244-7 . DOI:10.1109/ARES.2012.37. |