Agyemang, EF, Mensah, JA and Nyarko, E (2023). How dependable is World Continental COVID19 data? Disclosure of Inconsistencies in Daily Reportage Confirmed Cases, Recovered and Deaths During First Wave. Preprint – submitted to Heliyon. DOI:10.2139/ssrn.4516032.





Ali, A and Haque, S (2022). Application of Benford’s law to COVID19 cases in selected countries of the Caribbean and globally. Caribbean Medical Journal. ISSN/ISBN:26645599.





Campanelli, L (2022). On the Euclidean distance statistic of Benford’s law. Communications in Statistics  Theory and Methods, pp. 124. DOI:10.1080/03610926.2022.2082480}.





Campanelli, L (2022). Breaking Benford’s law: A statistical analysis of Covid19 data using the Euclidean distance statistic. Preprint submitted to Statistics in Transition.





Campanelli, L (2022). Monkeypox Obeys the (Benford's) Law: A Dynamic Analysis of Daily Case Counts in the United States of America. Preprint submitted to Statistics in Tran
sition new series..





Campanelli, L (2022). Tuning up the KolmogorovSmirnov test for testing Benford’s law. Preprint on ResearchGate.





Carmo, CRS, Nunes, FC and Caneppele, FdL (2023). The limits of conformity analysis under the NewcombBenford law and the COVID19 pandemic in Brazil
. Brazilian Journal of Biometrics 41, pp. 234248 . DOI:10.28951/bjb.v41i3.626.





Cerqueti, R and Provenzano, D (2023). Benford's Law for economic data reliability: The case of tourism flows in Sicily. Chaos, Solitons & Fractals 173, p. 113635. DOI:10.1016/j.chaos.2023.113635.





Etim, ES, Daferighe, EE, Inyang, AB and Ekikor, ME (2023). Application of Benford’s Law and the Detection of Accounting Data Fraud in Nigeria. International Journal of Auditing and Accounting Studies 5(2) pp. 119163. DOI:10.47509/IJAAS.2023.v05i02.01.





Farhadi, N and Lahooti, H (2021). Are COVID19 Data Reliable? A Quantitative Analysis of Pandemic Data from 182 Countries. COVID 1, pp. 137–152. DOI:10.3390/covid1010013.





Farhadi, N and Lahooti, H (2021). Pandemic Growth and Benfordness: Empirical Evidence from 176 Countries Worldwide. COVID 1(1), pp. 366383. DOI:10.3390/covid1010031.





Farhadi, N and Lahooti, H (2022). Forensic Analysis of COVID19 Data from 198 Countries Two Years after the Pandemic Outbreak. COVID 2(4), pp. 472484. DOI:10.3390/covid2040034.





Farhadi, N and Lahooti, H (2022). In Data We Trust: Proving Market Manipulation on the Tehran Stock Exchange. International Journal of Business and Management 17(4). DOI:10.5539/ijbm.v17n4p1.





Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2022). Reliability of COVID19 data and government policies. Preprint arXiv:2208.11226 [physics.socph]; last accessed August 31, 2022.





Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2023). COVID19 data, mitigation policies and Newcomb–Benford law. Chaos, Solitons and Fractals 174 p. 113814. DOI:10.1016/j.chaos.2023.113814.





Pinheiro, MF (2024). NewcombBenford Law in public procurement contracts. Master Thesis, NOVA Information Management School, Instituto Superior de Estatística e Gestão de Informação, Universidade Nova de Lisboa.





Us, D (2021). Benford's Law: An Empirical Analysis of Reported Covid19 Cases and Institutional Structures Around the Globe
. Undergraduate Thesis, Università commerciale Luigi Bocconi, Milan. DOI:10.13140/RG.2.2.28839.88488.





Youkta, K, Paramanik, RN and Nupur, S (2023). Does Digital Awareness Reduce Misreporting of Covid19 Data? An Empirical Investigation. Review of Economic Analysis 15(34), pp. 271283.





Zenkov, AV (2021). Stylometry and Numerals Usage: Benford’s Law and Beyond. Stats 4(4), pp. 10511068. ISSN/ISBN:2571905X. DOI:10.3390/stats4040060.




