This work is cited by the following items of the Benford Online Bibliography:
| Agyemang, EF, Mensah, JA and Nyarko, E (2023). How dependable is World Continental COVID-19 data? Disclosure of Inconsistencies in Daily Reportage Confirmed Cases, Recovered and Deaths During First Wave. Preprint – submitted to Heliyon. DOI:10.2139/ssrn.4516032. |
|
|
|
|
| Agyemang, EF, Nortey, ENN, Minkah, R and Asah-Asante, K (2023). Baseline comparative analysis and review of election forensics: Application to Ghana’s 2012 and 2020 presidential elections. Heliyon 9 p. e18276. DOI:10.1016/j.heliyon.2023.e18276. |
|
|
|
|
| Anderson, KM, Dayaratna, K, Gonshorowski, D and Miller, SJ (2022). A New Benford Test for Clustered Data with Applications to American Elections. Stats 5(3), pp. 841–855. DOI:10.3390/stats5030049 . |
|
|
|
|
| Arezzo, MF and Cerqueti, R (2023). A Benford’s Law view of inspections’ reasonability. Physica A: Statistical Mechanics and its Applications 632, Part 1, pp. 129294. DOI:10.1016/j.physa.2023.129294. |
|
|
|
|
| Cano-Rodríguez, M (2025). How much is too much? Measuring divergence from Benford's Law with the Equivalent Contamination Proportion (ECP). Preprint arXiv:2506.09915 [econ.EM]; last accessed August 27, 2025. DOI:10.48550/arXiv.2506.09915. |
|
|
|
|
| Capalbo, F, Galati, L, Lupi, C and Smarra, M (2022). The Impact of Elections on the Quality of Financial Statements in Municipally Owned Entities. University of Molise Economics and Statistics Discussion Paper n. 078/22. |
|
|
|
|
| Capalbo, F, Galati, L, Lupi, C and Smarra, M (2023). Local elections and the quality of financial statements in municipally owned entities: A Benford analysis. Chaos, Solitons and Fractals 173 p. 113752. DOI:10.1016/j.chaos.2023.113752. |
|
|
|
|
| Cerqueti, R and Lupi, C (2021). Some New Tests of Conformity with Benford's Law. Stats 4(3), pp. 745-761. DOI:10.3390/stats4030044. |
|
|
|
|
| Cerqueti, R and Lupi, C (2022). Severe testing of Benford’s law. Preprint arXiv:2202.05237 [stat.ME]; last accessed February 21, 2022. |
|
|
|
|
| Cerqueti, R and Lupi, C (2023). Severe testing of Benford's law. TEST 32(2), pp. 677-694. DOI:10.1007/s11749-023-00848-z. |
|
|
|
|
| Cerqueti, R and Provenzano, D (2023). Benford's Law for economic data reliability: The case of tourism flows in Sicily. Chaos, Solitons & Fractals 173, p. 113635. DOI:10.1016/j.chaos.2023.113635. |
|
|
|
|
| Davic, RD (2025). Newcomb-Benford number law and ecological processes. PLos One 20(3), pp. e0310205. DOI:doi.org/10.1371/journal.pone.0310205. |
|
|
|
|
| Domínguez- Bustos, AR, Cabrera-Castro, R, Ramos, ML, Abaunza, P and Báez, JC (2024). Using Benford's Law to Detect Possible Biases in Reported Catches of Tropical Tuna From the Indian Ocean. Fisheries Management and Ecology, p. e12749. DOI:10.1111/fme.12749. |
|
|
|
|
| Dutta-Powell, R (2024). The perils of premature evaluation: reassessing the application of Benford’s Law to the USA’s COVID-19 data. Preprint on ResearchSquare.com. DOI:10.21203/rs.3.rs-5392071/v1. |
|
|
|
|
| Eutsler, J, Harris, MK, Williams, LT and Cornejo, OE (2023). Accounting for partisanship and politicization: Employing Benford's Law to examine misreporting of COVID-19 infection cases and deaths in the United States. Accounting, Organizations and Society, in press. DOI:10.1016/j.aos.2023.101455. |
|
|
|
|
| Fernandes, P, Ciardhuáin, SÓ and Antunes, M (2024). Unveiling Malicious Network Flows Using Benford’s Law. Mathematics 12(15), p. 2299. DOI:10.3390/math12152299. |
|
|
|
|
| Grodner, J and Rubin, AE (2025). Benford’s Law: applications to chondrules and refractory inclusions. Discover Space 129(2). DOI:10.1007/s11038-025-09561-3. |
|
|
|
|
| Le, L and Mantelaers, E (2024). Benford’s Law and Beyond: A framework for auditors. Maandblad voor Accountancy en Bedrijfseconomie 98(7), pp. 427–438. DOI:10.5117/mab.98.134061. |
|
|
|
|
| Mir, TA, Darzi, MA, Ishtiaq, PM and Mufti, S (2023). Benford’s law: an application to sunspot data. Preprint posted on Research Square. DOI:10.21203/rs.3.rs-3372099/v1. |
|
|
|
|
| Noleto-Filho, EM, Carvalho, AR, Thomè-Souza, MJF and Angelini, R (2022). Reporting the accuracy of small–scale fishing data by simply applying Benford’s law. Frontiers in Marine Science 9, pp. 947503. DOI:10.3389/fmars.2022.947503. |
|
|
|
|
| Păunescu, M, Nichita, E-M, Lazăr, P and Frățilă, A (2023). Applying Benford’s Law to Detect Fraud in the Insurance Industry—A Case Study from the Romanian Market. Proceedings of Fostering Recovery Through Metaverse Business Modelling. DOI:10.1007/978-3-031-28255-3_4. |
|
|
|
|
| Petráš, J, Hyseni, A, Zbojovský, J and Pavlík, M (2025). Detecting Benford’s Law Effectiveness Threshold Differences According to Affecting Operation. Axioms 14(4), pp. 273. DOI:10.3390/axioms14040273. |
|
|
|
|
| Petráš, J, Pavlik, M, Zbojovský, J, Hyseni, A and Dudiak, J (2023). Benford’s Law in Electric Distribution Network. Mathematics 11(18), pp. 3863. DOI:10.3390/math11183863. |
|
|
|
|
| Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055. |
|
|
|
|
| Slosar, DJ (2026). Analysis of Benford’s Law Conformity with Web of Science Citations of Documents. Acta Informatica Pragensia 15(1). DOI:10.18267/j.aip.281. |
|
|
|
|
| Sylwestrzak, M (2023). Applying Benford’s Law to Detect Earnings Management. Journal of Economics and Management 45(1), pp. 216–36. DOI:10.22367/jem.2023.45.10. |
|
|
|
|
| Toosi, FG (2024). The Relationship Between the Distribution of Neural Network Weights and Model Accuracy: A Benford’s Law Perspective. Proceedings of International Congress on Information and Communication Technology, pp. 509–528. DOI:10.1007/978-981-97-3305-7_41. |
|
|
|
|
| Toosi, FG (2025). Benford’s Law in Basic RNN and Long Short-Term Memory (LSTM) and their Associations. Preprint, Authorea. DOI:10.22541/au.173901291.14107238/v1. |
|
|
|
|
| Torres-Zúñiga, V (2024). Hoja de cálculo de la ley de Newcomb-Benford con datos científicos, ChatGPT, censo y COVID-19 en México. Preprint del Manuscrito, incluido en el libro: Argumentos y usos tecnopedagógicos de la inteligencia artificial SOMECE, pp. 370-385 . ISSN/ISBN:978-607-59406-3-2. SPA |
|
|
|
|
| Yap, WH and Lai, KH (2024). Healthcare Insurance Fraud Detection using Benford’s Law. In: Proceedings of the 2024 11th Malaysia Statistics Conference. |
|
|
|