Agyemang, EF, Mensah, JA and Nyarko, E (2023). How dependable is World Continental COVID19 data? Disclosure of Inconsistencies in Daily Reportage Confirmed Cases, Recovered and Deaths During First Wave. Preprint – submitted to Heliyon. DOI:10.2139/ssrn.4516032.





Azevedo, CdS, Gonçalves, RF, Gava, VL and Spinola, MdM (2021). A Benford’s Law based method for fraud detection using R Library. MethodsX 2021. DOI:10.1016/j.mex.2021.101575.





Fallico, D (2023). Searching Applications of Benford’s Law to Investigate Beam Jitter. Presentation for Teacher Research Associate
(TRAC) Program at Fermilab.





Giannakis, N and Burlac, L (2021). Benford’s Law: Analysis of the trustworthiness of COVID19 reporting in the context of different political regimes. Bachelor’s Degree Project in Mathematics, Division of Mathematics and Physics Mälardalen University, Sweden.





Hanci, F (2022). Application of Benford’s law in agricultural production statistics. Journal of the National Science Foundation of Sri Lanka 50 (2), pp. 387393. DOI:10.4038/jnsfsr.v50i2.10429.





MazaQuiroga, R, ThurnhoferHemsi, K, LópezRodríguez, D and LópezRubio, E (2023). Regression of the Rician Noise Level in 3D Magnetic Resonance Images from the Distribution of the First Significant Digit
. Axioms 12, pp. 1117
. DOI:10.3390/axioms12121117.





Pinheiro, MF (2024). NewcombBenford Law in public procurement contracts. Master Thesis, NOVA Information Management School, Instituto Superior de Estatística e Gestão de Informação, Universidade Nova de Lisboa.





Pinto, SO and Sobreiro, VA (2022). Literature review: Anomaly detection approaches on digital business financial systems. Digital Business 2(2), pp. 100038. ISSN/ISBN:26669544. DOI:10.1016/j.digbus.2022.100038.





Whyman, G (2021). Origin, Alternative Expressions of NewcombBenford Law and Deviations of Digit Frequencies. Applied Mathematics 12, pp. 578586. ISSN/ISBN:21527385. DOI:10.4236/am.2021.127041.




