Agyemang, EF, Mensah, JA and Nyarko, E (2023). How dependable is World Continental COVID-19 data? Disclosure of Inconsistencies in Daily Reportage Confirmed Cases, Recovered and Deaths During First Wave. Preprint – submitted to Heliyon. DOI:10.2139/ssrn.4516032.
|
|
|
|
|
Ahmad, S, Latif, DA, Mahmood, DM, Aslam, R, Abiddin, ZU, Mumtaz, H, Ahmed, K, Mehdi, W and begum, W (2022). Terminal digit preference and the accuracy of breast cancer diameter reporting based on Benford's law. Annals of Medicine and Surgery. DOI:10.1016/ j.amsu.2022.103993.
|
|
|
|
|
Awad, MM (2022). Evaluation of COVID-19 Reported Statistical Data Using Cooperative Convolutional Neural Network Model (CCNN). COVID 2(5), pp. 674–690. DOI:10.3390/covid2050051.
|
|
|
|
|
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861.
|
|
|
|
|
Carmo, CRS, Nunes, FC and Caneppele, FdL (2023). The limits of conformity analysis under the Newcomb-Benford law and the COVID-19 pandemic in Brazil
. Brazilian Journal of Biometrics 41, pp. 234-248 . DOI:10.28951/bjb.v41i3.626.
|
|
|
|
|
Cerasa, A (2022). Testing for Benford’s Law in very small samples: Simulation study and a new test proposal. PLoS ONE 17(7), pp. e0271969. DOI:10.1371/journal.pone.0271969.
|
|
|
|
|
Eckhartt, GM and Ruxton, GD (2023). Investigating and preventing scientific misconduct using Benford’s Law. Research Integrity and Peer Review 8(1). DOI:10.1186/s41073-022-00126-w.
|
|
|
|
|
Filho, DF, Silva, L and Medeiros, H (2022). “Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data. Globalization and Health 18, pp.105. DOI:10.1186/s12992-022-00899-1.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2022). Reliability of COVID-19 data and government policies. Preprint arXiv:2208.11226 [physics.soc-ph]; last accessed August 31, 2022.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2023). COVID-19 data, mitigation policies and Newcomb–Benford law. Chaos, Solitons and Fractals 174 p. 113814. DOI:10.1016/j.chaos.2023.113814.
|
|
|
|
|
Glen, S (2020). Fraudulent Covid-19 Data and Benford's Law. Blog posted on December 31; last accessed February 15, 2021.
|
|
|
|
|
Herteliu, C, Jianu, I, Dragan, IM, Apostu, S and Luchian, I (2021). Testing Benford’s Laws (non)conformity within disclosed companies’ financial statements among hospitality industry in Romania. Physica A: Statistical Mechanics and its Applications 582, p. 126221. DOI:10.1016/j.physa.2021.126221.
|
|
|
|
|
Jošić, H and Žmuk, B (2021). Assessing the Quality of COVID-19 Data: Evidence from Newcomb-Benford Law. Facta Universitatis, in press. DOI:10.22190/FUEO210326008J.
|
|
|
|
|
Pinheiro, MF (2024). Newcomb-Benford Law in public procurement contracts. Master Thesis, NOVA Information Management School, Instituto Superior de Estatística e Gestão de Informação, Universidade Nova de Lisboa.
|
|
|
|
|
Silva, LEdO and Figueiredo, D (2024). A novel approach to evaluate data integrity: evidence from COVID-19 in China. Brazilian Journal of Biometrics 42(1), pp. 78-87. DOI:10.28951/bjb.v42i1.659.
|
|
|
|
|