This work is cited by the following items of the Benford Online Bibliography:
Arezzo, MF and Cerqueti, R (2023). A Benford’s Law view of inspections’ reasonability. Physica A: Statistical Mechanics and its Applications 632, Part 1, pp. 129294. DOI:10.1016/j.physa.2023.129294. | ||||
Benedito-Nunes, AM, Gamper, J, Chapman, SC, Friel, M and Gjerloev, JW (2023). Newcomb-Benford Law characterization of solar wind magnetic field and geomagnetic indices. Posted on Authorea; last accessed April 29, 2023. DOI:10.22541/essoar.168121593.35845953/v1. | ||||
Benedito-Nunes, AM, Gamper, J, Chapman, SC, Friel, M and Gjerloev, JW (2023). Newcomb-Benford Law as a generic flag for changes in the derivation of long-term solar terrestrial physics timeseries. RAS Techniques and Instruments, pp. rzad041. DOI:10.1093/rasti/rzad041. | ||||
Caffarini, J, Gjini, K, Sevak, B, Waleffe, R, Kalkach-Aparicio, Poly, M and Struck, AF (2022). Engineering Nonlinear Epileptic Biomarkers Using Deep Learning and Benford’s Law. Scientific Reports 12(2), p. 5397. DOI:10.1038/s41598-022-09429-w. | ||||
Carmo, CRS, Caneppele, FdL and Nunes, FC (2021). Analysis of Covid-19 Contamination and Deaths Cases in Brazil According to The Newcomb-Benford Law. Revista Brasileira de Biometria 39(4), pp.522-535. DOI:10.28951/rbb.v39i4.535. | ||||
Carmo, CRS, Nunes, FC and Caneppele, FdL (2023). The limits of conformity analysis under the Newcomb-Benford law and the COVID-19 pandemic in Brazil . Brazilian Journal of Biometrics 41, pp. 234-248 . DOI:10.28951/bjb.v41i3.626. | ||||
Cerqueti, R and Lupi, C (2022). Severe testing of Benford’s law. Preprint arXiv:2202.05237 [stat.ME]; last accessed February 21, 2022. | ||||
Cerqueti, R and Lupi, C (2023). Severe testing of Benford's law. TEST 32(2), pp. 677-694. DOI:10.1007/s11749-023-00848-z. | ||||
Cerqueti, R, Maggi, M and Riccioni, J (2022). Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk. Annals of Operations Research. DOI:10.1007/s10479-022-04742-z. | ||||
Cerqueti, R and Provenzano, D (2023). Benford's Law for economic data reliability: The case of tourism flows in Sicily. Chaos, Solitons & Fractals 173, p. 113635. DOI:10.1016/j.chaos.2023.113635. | ||||
Filho, DF, Silva, L and Medeiros, H (2022). “Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data. Globalization and Health 18, pp.105. DOI:10.1186/s12992-022-00899-1. | ||||
González, F (2019). Detecting Anomalous Data in Household Surveys: Evidence for Argentina. Journal of Social and Economic Statistics 8(2), pp. 1-10. DOI:10.2478/jses-2019-0001. | ||||
González, F (2020). Self-reported income data: are people telling the truth?. To appear in Journal of Financial Crime. DOI:10.1108/JFC-08-2019-0113. | ||||
Hanci, F (2022). Application of Benford’s law in agricultural production statistics. Journal of the National Science Foundation of Sri Lanka 50 (2), pp. 387-393. DOI:10.4038/jnsfsr.v50i2.10429. | ||||
Herteliu, C, Jianu, I, Dragan, IM, Apostu, S and Luchian, I (2021). Testing Benford’s Laws (non)conformity within disclosed companies’ financial statements among hospitality industry in Romania. Physica A: Statistical Mechanics and its Applications 582, p. 126221. DOI:10.1016/j.physa.2021.126221. | ||||
Hulme, PE, Ahmed, DA, Haubrock, PJ, Kaiser, BA, Kourantidou, M, Leroy, B and McDermott, SM (2023). Widespread imprecision in estimates of the economic costs of invasive alien species worldwide. Science of the Total Environment, pp. 167997. DOI:10.1016/j.scitotenv.2023.167997. | ||||
Ileanu, B-V (2021). Time Lag Evidence of Anti-Abortion Decree and Perturbation of Births Distribution. A Benford Law Approach. Preprint arXiv:2106.15520 [physics.soc-ph]; last accessed July 30, 2021. | ||||
Jalan, A, Matkovskyy, R and Yarovaya, L (2021). “Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic. International Review of Financial Analysis 78, p. 101958 . DOI:10.1016/j.irfa.2021.101958. | ||||
Kopczewska, K and Kopczewski, T (2022). Natural spatial pattern—When mutual socio-geo distances between cities follow Benford’s law. Plos one 17(10), p. e0276450. DOI:10.1371/journal.pone.0276450. | ||||
Mahasuar, K (2021). Lies, damned lies, and statistics: The uncertainty over COVID-19 numbers in India. Knowledge and Process Management, pp. 1– 8. DOI:10.1002/kpm.1685. | ||||
Mbona, I and Eloff, JHP (2022). Feature selection using Benford’s law to support detection of malicious social media bots. Information Sciences 582, pp. 369-381. DOI:10.1016/j.ins.2021.09.038. | ||||
Mbona, I and Eloff, JHP (2022). Detecting Zero-day intrusion attacks using semi-supervised machine learning approaches. IEEE Access. DOI:10.1109/ACCESS.2022.3187116. | ||||
Mucko, P and Adamczyk, A (2023). Does the bankrupt cheat? Impact of accounting manipulations on the effectiveness of a bankruptcy prediction. PLoS ONE 18(1), e0280384. ISSN/ISBN:1932-6203. DOI:10.1371/journal.pone.0280384. | ||||
Orth, CdO, Michaelsen, AT and Lerner, AF (2020). Newcomb Benford law and accounting audit: a systematic literature review. Gestao E Desenvolvimento 17(2), pp. 111-135. DOI:10.25112/rgd.v17i2.2035. SPA | ||||
Patel, PC, Tsionas, MG and Guedes, MJ (2022). Benford's law, small business financial reporting, and survival. Managerial and Decision Economics. DOI:10.1002/mde.3595. | ||||
Păunescu, M, Nichita, E-M, Lazăr, P and Frățilă, A (2023). Applying Benford’s Law to Detect Fraud in the Insurance Industry—A Case Study from the Romanian Market. Proceedings of Fostering Recovery Through Metaverse Business Modelling. DOI:10.1007/978-3-031-28255-3_4. | ||||
Pinto, SO and Sobreiro, VA (2022). Literature review: Anomaly detection approaches on digital business financial systems. Digital Business 2(2), pp. 100038. ISSN/ISBN:2666-9544. DOI:10.1016/j.digbus.2022.100038. | ||||
Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055. | ||||
Sifat, I, van Donselaar, D and Tariq, SA (2023). Suspicious Trading in Nonfungible Tokens (NFTs). Preprint on ResearchGate. DOI:10.13140/RG.2.2.17058.91843. | ||||
Silva, AdeA and Gouvêa, MA (2023). Study on the effect of sample size on type I error, in the first, second and first-two digits excessmad tests. International Journal of Accounting Information Systems 48, p. 100599. DOI:10.1016/j.accinf.2022.100599. | ||||
Silva, LEdO and Figueiredo, D (2024). A novel approach to evaluate data integrity: evidence from COVID-19 in China. Brazilian Journal of Biometrics 42(1), pp. 78-87. DOI:10.28951/bjb.v42i1.659. | ||||
Tošić, A and Vičič, J (2021). Use of Benford's law on academic publishing networks. Journal of Informetrics 15(3), 101163. DOI:10.1016/j.joi.2021.101163. | ||||
Vičič, J and Tošić, A (2022). Application of Benford’s law on cryptocurrencies. Journal of Theoretical and Applied Electronic Commerce Research 17(1), pp. 313-326. DOI:10.3390/jtaer17010016. | ||||
Vishnu, U (2021). Deepfake Detection using Benford’s Law and Distribution Variance Statistic. International Research Journal of Engineering and Technology(IRJET) 08(10), pp. 712-719. |