This work is cited by the following items of the Benford Online Bibliography:
Azevedo, CdS, Gonçalves, RF, Gava, VL and Spinola, MdM (2021). A Benford’s Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis. Physica A 567, p. 125626. DOI:10.1016/j.physa.2020.125626. | ||||
Barabesi, L, Cerasa, A, Cerioli, A and Perotta, D (2021). A combined test of the Benford Hypothesis With Anti-fraud Applications. Proceedings of 13th Scientific Meeting of the Classification and Data Analysis Group, Florence, September 9-11. STAMPA, pp. 256-259. DOI:10.36253/978-88-5518-340-6. | ||||
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association. DOI:10.1080/01621459.2021.1891927. | ||||
Barabesi, L, Cerioli, A and Di Marzio, M (2023). Statistical models and the Benford hypothesis: a unified framework. TEST. DOI:10.1007/s11749-023-00881-y. | ||||
Barabesi, L, Cerioli, A and Perrotta, D (2021). Forum on Benford’s law and statistical methods for the detection of frauds. Statistical Methods & Applications 30, pp. 767–778. DOI:10.1007/s10260-021-00588-0. | ||||
Barabesi, L and Pratelli, L (2020). On the Generalized Benford law. Statistics & Probability Letters 160, 108702 . DOI:10.1016/j.spl.2020.108702. | ||||
Cerasa, A (2022). Testing for Benford’s Law in very small samples: Simulation study and a new test proposal. PLoS ONE 17(7), pp. e0271969. DOI:10.1371/journal.pone.0271969. | ||||
Cerioli, A, Barabesi, L, Cerasa, A and Perrotta, D (2022). Who is afraid of the probability-savvy fraudster?. Conference presentation at MBC2 2022 Models and Learning for Clustering and Classification 6th International Workshop, Catania. | ||||
Chen, T and Tsourakakis, CE (2022). AntiBenford Subgraphs: Unsupervised Anomaly Detection in Financial Networks. Preprint arXiv:2205.13426 [cs.; last accessed June 9, 2022. | ||||
Crisan, D and Gota, DI (2023). The First-Digit Law application in digital forensics in crystal forgery research. Proceedings of 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, pp. 1-7. DOI:10.1109/ICECCME57830.2023.10253354. | ||||
Cuenca, AV (2023). La Ley de Benford, Del Primer Dígito Significativo. Trabajo Fin de Grado en Matemáticas, Universidad de Valladolid . SPA | ||||
D'Alessandro, A (2020). Benford's law and metabolomics: A tale of numbers and blood. Transfusion and Apheresis Science 59(6), pp. 103019. DOI:10.1016/j.transci.2020.103019. | ||||
Ducharme, RG, Kaci, S and Vovor-Dassu ,C (2020). Smooths Tests of Goodness-of-fit for the Newcomb-Benford distribution. Preprint: arXiv:2003.00520v1 [math.ST]. Published in Mathématiques appliquées et stochastiques, 3(1). FRE | ||||
Eckhartt, GM and Ruxton, GD (2023). Investigating and preventing scientific misconduct using Benford’s Law. Research Integrity and Peer Review 8(1). DOI:10.1186/s41073-022-00126-w. | ||||
Ensminger, J and Leder-Luis, J (2022). Measuring Strategic Data Manipulation: Evidence from a World Bank Project. Preprint, submitted for publication. | ||||
Ensminger, J and Leder-Luis, J (2022). Detecting Fraud in Development Aid. Preprint. | ||||
Ergin, E and Erturan, IE (2020). Is Benford’s Law Effective in Fraud Detection for Expense Cycle? . Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi 42(2), pp. 316–326. DOI:10.14780.muiibd.854444. | ||||
Fernandes, P, Ó Ciardhuáin, S and Antunes, M (2024). Uncovering Manipulated Files Using Mathematical Natural Laws. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham . DOI:10.1007/978-3-031-49018-7_4. | ||||
Filho, DF, Silva, L and Medeiros, H (2022). “Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data. Globalization and Health 18, pp.105. DOI:10.1186/s12992-022-00899-1. | ||||
Gao, J, Zhao, Y and Cui, R (2020). Research on the Applicability of Benford’s Law in Chinese Texts. Proceedings of 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), Manchester, United Kingdom, pp. 13-17. DOI:10.1109/AIAM50918.2020.00009. | ||||
Hulme, PE, Ahmed, DA, Haubrock, PJ, Kaiser, BA, Kourantidou, M, Leroy, B and McDermott, SM (2023). Widespread imprecision in estimates of the economic costs of invasive alien species worldwide. Science of the Total Environment, pp. 167997. DOI:10.1016/j.scitotenv.2023.167997. | ||||
Kalameyets, M, Levshun, D, Soloviev, S, Chechulin, A and Kotenko, I (2020). Social networks bot detection using Benford’s law. SIN 2020: 13th International Conference on Security of Information and Networks, Article No.: 19. pp. 1–8. DOI:10.1145/3433174.3433589. | ||||
Kauko, K (2024). How to detect what drives deviations from Benford’s law? An application to bank deposit data. Empir. Econ (2024). | ||||
Kennedy, AP and Yam, SCP (2020). On the authenticity of COVID-19 case figures. PLoS ONE 15(12): e0243123. DOI:10.1371/journal.pone.0243123. | ||||
Lacasa, L (2019). Newcomb–Benford law helps customs officers to detect fraud in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 11-13. DOI:10.1073/pnas.1819470116. | ||||
Martínez JW, Martínez JC, Rincón DA, Salazar, DA, Castrillón JD, Gómez MDP, Suárez OF, Vélez JP, Valencia ÁM, Gómez S, Rincón ÁM, Idrovo ÁJ, Moreno-Montoya J, Prieto-Alvarado FE, Hurtado-Ortiz A and (2020). Benchmarking of public health surveillance of COVID-19 in Colombia: First semester. Biomedica : Revista del Instituto Nacional de Salud 40(Supl. 2), pp. 198-204. SPA | ||||
Morag, S and Salmon-Divon, M (2019). Characterizing Human Cell Types and Tissue Origin Using the Benford Law. Cells 8(9), p. 1004. DOI:10.3390/cells8091004. | ||||
Moreau, VH (2021). Inconsistencies in Countries COVID-19 Data Revealed by Benford’s Law’. Model Assisted Statistics and Applications 16(1), pp. 73-79. DOI:10.3233/MAS-210517. | ||||
Morillas-Jurado, FG, Caballer-Tarazona, M and Caballer-Tarazona, V (2022). Applying Benford’s Law to Monitor Death Registration Data: A Management Tool for the COVID-19 Pandemic. Mathematics 10(1), 46. DOI:10.3390/math10010046. | ||||
Mumic, N and Filzmoser, P (2021). A multivariate test for detecting fraud based on Benford’s law, with application to music streaming data. Statistical Methods & Applications 30, 819–840. DOI:10.1007/s10260-021-00582-6. | ||||
O'Mahony, L, O'Sullivan, DJP and Nikolov, NS (2023). On the Detection of Anomalous or Out-of-Distribution Data in Vision Models Using Statistical Techniques.. In: Proceedings of the 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023. AICV 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 164. Springer, Cham.. DOI:10.1007/978-3-031-27762-7_40. | ||||
Perrotta, D, Cerasa, A, Barabesi, L and Menegatti, M (2019). Contamination And Manipulation Of Trade Data: The Two Faces Of Customs Fraud . Book of Short Papers, Proceedings of the 12th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), pp. 394-397. | ||||
Renaldo, N, Hutahuruk, MB and Putri, IY (2022). Forensic Accounting: The Use of Benford's Law to Evaluate Indications of Fraud . Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos (REDECA) 9(e57343), pp. 1-15. DOI:10.23925/2446-9513.2022v9id57343. | ||||
Scholes, CA (2023). Applying the significant-digit law to simplify grading of chemical engineering students design projects. Australasian Journal of Engineering Education. DOI:10.1080/22054952.2023.2247292. | ||||
Scholes, CA (2023). Utilising forensic tools to assist in chemical engineering capstone assessment grading. Education for Chemical Engineers 45, pp. 61-67 . DOI:10.1016/j.ece.2023.08.001. | ||||
Silva, LEdO and Figueiredo, D (2024). A novel approach to evaluate data integrity: evidence from COVID-19 in China. Brazilian Journal of Biometrics 42(1), pp. 78-87. DOI:10.28951/bjb.v42i1.659. | ||||
Vovor-Dassu, KC (2021). Tests d'adéquation à la loi de Newcomb-Benford comme outils de détection de fraudes. PhD Thesis L’Universite de Montpellier. DOI:10.13140/RG.2.2.12559.25764. FRE | ||||
Wang, H, Liu, T, Zhang, Y, Wu, Y, Sun, Y, Dong, J and Huang, W (2023). Last Digit Tendency: Lucky Numbers and Psychological Rounding in Mobile Transactions. Fundamental Research. DOI:10.1016/j.fmre.2023.11.011. | ||||
Wang, L and Ma, B-Q (2023). A concise proof of Benford’s law. Fundamental Research . DOI:10.1016/j.fmre.2023.01.002. | ||||
Zhang, J (2020). Testing Case Number of Coronavirus Disease 2019 in China with Newcomb-Benford Law. Preprint arXiv:2002.05695 [physics.soc-ph]; last accessed February 18, 2020. |