Al-Bandawi, H and Deng, G (2018). Blind image quality assessment based on Benford's law. IET Image Processing 12(11), pp. 1983 – 1993. DOI:10.1049/iet-ipr.2018.5385 .
|
|
|
|
|
Amerini, I, Becarelli, R, Caldelli, R, Del Mastio, A and (2014). Splicing forgeries localization through the use of first digit features. Proceedings of 2014 IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, GA, USA, 2014, pp. 143-148 . DOI:10.1109/WIFS.2014.7084318.
|
|
|
|
|
Iorliam, A (2016). Application of power laws to biometrics, forensics and network traffic analysis. PhD Thesis, University of Surrey.
|
|
|
|
|
Iorliam, A, Ho, AT, Poh, N, Zhao, X and Xia, Z (2017). Benford's law for classification of biometric images. In: User-Centric Privacy and Security in Biometrics, Claus Vielhauer (Ed.). ISSN/ISBN:9781785612077. DOI:10.1049/PBSE004E_ch11.
|
|
|
|
|
Iorliam, A, Ho, ATS, Waller, A and Zhao, X (2017). Using Benford's Law Divergence and Neural Networks for Classification and Source Identification of Biometric Images. In: Shi Y., Kim H., Perez-Gonzalez F., Liu F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science, vol 10082. Springer, Cham, pp. 88-105. DOI:10.1007/978-3-319-53465-7_7.
|
|
|
|
|
Iorliam, A and Shangbum, FC (2017). On the Use of Benford’s Law to Detect JPEG Biometric Data Tampering. Journal of Information Security 8, pp. 240-256. DOI:10.4236/jis.2017.83016.
|
|
|
|
|
Iorliam, A, Tirunagari, S, Ho, ATS, Li, S, Waller, A and Poh, N (2017). "Flow Size Difference" Can Make a Difference: Detecting Malicious TCP Network Flows Based on Benford's Law. arXiv:1609.04214v2 [cs.CR], last accessed February 6, 2017.
|
|
|
|
|
Jiang, W, Ho, ATS, Treharne, H and Shi, YQ (2010). A Novel Multi-size Block Benford's Law Scheme for Printer Identification. In: Qiu G., Lam K.M., Kiya H., Xue XY., Kuo CC.J., Lew M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg, pp. 643-652. DOI:10.1007/978-3-642-15702-8_59.
|
|
|
|
|
Kirchner, M and Chakraborty, S (2015). A second look at first significant digit histogram restoration. Proceedings of 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, pp. 1-6. DOI:10.1109/WIFS.2015.7368578.
|
|
|
|
|
Milani, S, Tagliasacchi, M and Tubaro, S (2012). Discriminating multiple JPEG compression using first digit features. Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 25-30, pp. 2253-2256. DOI:10.1109/ICASSP.2012.6288362.
|
|
|
|
|
Milani, S, Tagliasacchi, M and Tubaro, S (2014). Discriminating multiple JPEG compressions using first digit features. APSIPA Transactions on Signal and Information Processing 3, e19. DOI:10.1017/ATSIP.2014.19.
|
|
|
|
|
Mire, A, Dhok, SB, Mistry, NJ and Porey, PD (2016). Tampering Localization in Digital Image Using First Two Digit Probability Features. In: Satapathy, S., Mandal, J., Udgata, S., Bhateja, V. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 435. Springer, New Delhi, pp. 133-151. DOI:10.1007/978-81-322-2757-1_15.
|
|
|
|
|
Parnak, A, Baleghi, Y, Kazemitabar, J and (2020). A Novel Forgery Detection Algorithm Based on Mantissa Distribution in Digital Images. Proceedings of 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1-4. DOI:10.1109/ICSPIS51611.2020.9349611.
|
|
|
|
|
Parnak, A, Damavandi, YB and Kazemitabar, SJ (2022). A Novel Image Splicing Detection Algorithm based on Generalized and Traditional Benford’s Law. International Journal of Engineering, Transactions A: Basics 35(4), pp. 626-634.
|
|
|
|
|
Pasquini, C and Boato, G (2013). JPEG compression anti-forensics based on first significant digit distribution. Proceedings of IEEE 15th International Workshop on Multimedia Signal Processing (MMSP). DOI:10.1109/MMSP.2013.6659339.
|
|
|
|
|
Pasquini, C, Boato, G and Perez-Gonzalez, F (2014). Multiple JPEG compression detection by means of Benford-Fourier coefficients. 2014 IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, GA, pp. 113-118. DOI:10.1109/WIFS.2014.7084313.
|
|
|
|
|
Pasquini, C, Comesana-Alfaro, P, Perez-Gonzalez, F and Boato, G (2014). Transportation-theoretic image counterforensics to First Significant Digit histogram forensics. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). DOI:10.1109/ICASSP.2014.6854090.
|
|
|
|
|
Sun, L, Ho, ATS, Xia, Z, Chen, J, Huang, X and Zhang, Y (2017). Detection and Classification of Malicious Patterns In Network Traffic Using Benford’s Law. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, pp. 864-872. DOI:10.1109/APSIPA.2017.8282154.
|
|
|
|
|
Taimori, A, Razzazi, F, Behrad, A, Ahmadi, A and Babaie-Zadeh, M (2012). A proper transform for satisfying Benford's Law and its application to double JPEG image forensics. Proceedings of 2012 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 000240-000244. DOI:10.1109/ISSPIT.2012.6621294.
|
|
|
|
|
Taimori, A, Razzazi, F, Behrad, A, Ahmadi, A and Babaie-Zadeh, M (2021). A part-level learning strategy for JPEG image recompression detection. Multimedia Tools and Applications. DOI:10.1007/s11042-020-10200-4.
|
|
|
|
|
Wang, Q, Zhang, R and Qing, K (2015). Passive Detection of Tampered JPEG Image Based on First Digit Statistics. Proceedings of 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, SA, Australia, pp. 401-404 . DOI:10.1109/IIH-MSP.2015.42.
|
|
|
|
|