Rane, AD, Mishra, U, Biswas, A, De, AS and Sen, U (2014). Benford's law gives better scale exponents in phase transitions of quantum XY models. Phys. Rev. E 90(2), p. 022144 (previously available from
http://arxiv.org/abs/1405.2744).
This work is cited by the following items of the Benford Online Bibliography:
Note that this list may be incomplete, and is currently being updated. Please check again at a later date.
Bera, A, Mishra, U, Roy, SS, Biswas, A, Sen, A and Sen, U (2018). Benford analysis of quantum critical phenomena: First digit provides high finitesize scaling exponent while first two and further are not much better. Physics Letters A 382(25), pp. 1639–1644 . DOI:10.1016/j.physleta.2018.04.020.





Bhole, G, Shukla, A and Mahesh, TS (2014). Benford distributions in NMR. Preprint arXiv:1406.7077 [physics.dataan]; last accessed June 7, 2018.





Bhole, G, Shukla, A and Mahesh, TS (2015). Benford analysis: A useful paradigm for spectroscopic analysis. Chemical Physics Letters 639, pp. 36–40. DOI:10.1016/j.cplett.2015.08.061.





Chanda, T, Das, T, Sadhukhan, D, Pal, AK, Sen(De), A and Sen, U (2015). Statistics of leading digits leads to unification of quantum correlations. Europhysics Letters 114(3). DOI:10.1209/02955075/114/30004.





Shukla, A, Pandey, AK and Pathak, A (2017). Benford’s distribution in extrasolar world: Do the exoplanets follow Benford’s distribution?. Journal of Astrophysics and Astronomy JOAAD1600138, 38(7). DOI:10.1007/s120360179427z.




