Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013.
|
|
|
|
|
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013.
|
|
|
|
|
Berger, A (2015). Most linear flows on ℝ^d are Benford
. Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016.
|
|
|
|
|
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2.
|
|
|
|
|
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y.
|
|
|
|
|
Cai, Z, Hildebrand, AJ and Li, J (2018). A local Benford Law for a class of arithmetic sequences. Preprint arXiv:1808.01496 [math.NT]; last accessed October 22, 2018.
|
|
|
|
|
Cai, Z, Hildebrand, AJ and Li, J (2019). A local Benford law for a class of arithmetic sequences. International Journal of Number Theory 15(3), pp.613-638. DOI:10.1142/S1793042119500325.
|
|
|
|
|
Chandee, V, Li, X, Pollack, P and Roy, AS (2022). On Benford's Law for Multiplicative Functions. Preprint arXiv:2203.13117v2 [math.NT]; last accessed May 30, 2022.
|
|
|
|
|
Chen, E, Park, PS and Swaminathan, AA (2016). On logarithmically Benford Sequences. Proc. Amer. Math. Soc. 144, pp. 4599-4608. DOI:10.1090/proc/13112 .
|
|
|
|
|
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019.
|
|
|
|
|
He, X, Hildebrand, AJ, Li, Y and Zhang, Y (2018). Complexity of Leading Digit Sequences. Preprint in arXiv:1804.00221 [math.NT]; last accessed October 23, 2018.
|
|
|
|
|
Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014.
|
|
|
|
|
Manack, C and Miller, SJ (2015). Leading digit laws on linear Lie groups. Research in Number Theory 1:22. DOI:10.1007/s40993-015-0024-4.
|
|
|
|
|
Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon
. International Journal of Number Theory 11:705, pp. 705--719. DOI:10.1142/S1793042115500384.
|
|
|
|
|
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1.
|
|
|
|
|
Pollack, P and Roy, AS (2022). Dirichlet, Sierpiński, and Benford. Journal of Number Theory (pre-proof). DOI:10.1016/j.jnt.2021.12.010.
|
|
|
|
|
Pollack, P and Roy, AS (2022). Benford Behavior and Distribution in Residue Classes of Large Prime Factors. Preprint; last accessed May 30, 2022.
|
|
|
|
|
Vandehey, J (2025). Digital problems in the theory of partitions. Combinatorial Number Theory: Proceedings of the Integers Conference 2023, edited by Bruce M. Landman, Florian Luca, Melvyn Nathanson, Jaroslav Nešetřil and Aaron Robertson, Berlin, Boston: De Gruyter, 2025, pp. 251-268. DOI:10.1515/9783111395593-018.
|
|
|
|
|