Turner, PR (1987). The distribution of l.s.d. and its implications for computer design. The Mathematical Gazette 71 (March), 26-31.
This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
 |
|
|
|
Bustoz, J, Feldstein, A, Goodman, R and Linnainmaa, S (1979). Improved Trailing Digits Estimates Applied to Optimal
Computer Arithmetic. Journal of the Association for Computing Machinery 26(4), pp. 716-730. ISSN/ISBN:0004-5411. DOI:10.1145/322154.322162.
|
 |
|
|
|
Feldstein, A and Turner, P (1986). Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction. IMA Journal of Numerical Analysis 6, pp. 241-251. DOI:10.1093/imanum/6.2.241.
|
 |
|
|
|
Hoare, GTQ and Wright, EE (1986). The distribution of first significant digits. The Mathematical Gazette 70(451), pp. 34-37. DOI:10.2307/3615826.
|
 |
|
|
|
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.
|
 |
|
|
|
Turner, PR (1982). The Distribution of Leading Significant Digits. IMA Journal orf Numerical Analysis 2(4), 407-412. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/2.4.407.
|
 |
|
|
|
Turner, PR (1984). Further Revelations on L.S.D.. IMA Journal of Numerical Analysis 4(2), 225-231. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/4.2.225.
|
 |
|
|
|