Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738.
|
|
|
|
|
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63.
|
|
|
|
|
De Ceuster, MJK, Dhaene, G and Schatteman, T (1998). On the hypothesis of psychological barriers in stock markets and Benford’s law. Journal of Empirical Finance 5(3), pp. 263-279. DOI:10.1016/S0927-5398(97)00024-8.
|
|
|
|
|
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798.
|
|
|
|
|
Drake, PD and Nigrini, MJ (2000). Computer assisted analytical procedures using Benford’s law. Journal of Accounting Education 18, pp. 127-146. DOI:10.1016/S0748-5751(00)00008-7.
|
|
|
|
|
Feller, W (1971). An Introduction to Probability Theory and Its Applications. 2nd ed., J. Wiley (see p 63, vol 2).
|
|
|
|
|
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815.
|
|
|
|
|
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.
|
|
|
|
|
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91.
|
|
|
|
|
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6.
|
|
|
|
|
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851.
|
|
|
|
|
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109.
|
|
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
|
|
|
|
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593.
|
|
|
|
|
Snyder, MA, Curry, JH and Dougherty, AM (2001). Stochastic aspects of one-dimensional discrete dynamical systems: Benford's law. Physical Review E 64(2), Art. No. 026222. ISSN/ISBN:1063-651X. DOI:10.1103/PhysRevE.64.026222.
|
|
|
|
|
Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498.
|
|
|
|
|