This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berton, L (1995). He’s Got Their Number: Scholar Uses Math to Foil Financial Fraud. The Wall Street Journal, p. B1, July 10. | ||||
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136. | ||||
Browne, MW (1998). Following Benford’s law, or looking out for no. 1. The New York Times, August 4, 1998. | ||||
Carslaw, CAPN (1988). Anomalies in Income Numbers: Evidence of Goal Oriented Behavior. The Accounting Review 63(2), pp. 321-327. | ||||
Christian, CW and Gupta, S (1993). New evidence on "Secondary Evasion". The Journal of the American Taxation Association 15(1), pp. 72-93. | ||||
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. | ||||
Dominguez, MP and Burguillo, JDA (1999). El primer digito significativo. Revista Epsilon de la S.A.E.M. "Thales", 45 (15/3), pp. 339-352. SPA | ||||
Flehinger, BJ (1966). On the Probability that a Random Integer has Initial Digit A. American Mathematical Monthly 73(10), pp. 1056-1061. ISSN/ISBN:0002-9890. DOI:10.2307/2314636. | ||||
Furry, WH and Hurwitz, H (1945). Distribution of numbers and distribution of significant figures. Nature 155(3924), pp. 52-53. DOI:doi:10.1038/155052a0. | ||||
Goudsmit, SA and Furry, WH (1944). Significant figures of numbers in statistical tables. Nature 154(3921), pp. 800-801. ISSN/ISBN:0028-0836. DOI:10.1038/154800a0. | ||||
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1996). A note on distributions of true versus fabricated data. Perceptual and Motor Skills 83, pp. 776-778 Part 1. ISSN/ISBN:0031-5215. DOI:10.2466/pms.1996.83.3.776. | ||||
Hill, TP (1997). Benford law. Encyclopedia of Mathematics Supplement, vol. 1, pp. 102-103. | ||||
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358. | ||||
Hill, TP (1999). The difficulty of faking data. Chance 12(3), pp. 27-31. DOI:10.1080/09332480.1999.10542154. | ||||
Maney, K. (2000). Baffled by math? Wait 'til I tell you about Benford's Law. USA today, 18 October 2000. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1994). Using digital frequencies to detect fraud. Fraud Magazine, The White Paper Index 8(2), pp. 3-6. | ||||
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91. | ||||
Nigrini, MJ (2000). Digital Analysis Using Benford's Law: Tests and Statistics for Auditors. Global Audit Publications: Vancouver, Canada. DOI:10.1201/1079/43266.28.9.20010301/30389.4. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. | ||||
Raimi, RA (1969). On Distribution of First Significant Figures. American Mathematical Monthly 76(4), pp. 342-348. ISSN/ISBN:0002-9890. DOI:10.2307/2316424. | ||||
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109. | ||||
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934. |