Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
 |
|
|
|
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3.
|
 |
|
|
|
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136.
|
 |
|
|
|
Browne, MW (1998). Following Benford’s law, or looking out for no. 1. The New York Times, August 4, 1998.
|
 |
|
|
|
Carslaw, CAPN (1988). Anomalies in Income Numbers: Evidence of Goal Oriented Behavior. The Accounting Review 63(2), pp. 321-327.
|
 |
|
|
|
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34.
|
 |
|
|
|
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952.
|
 |
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
 |
|
|
|
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815.
|
 |
|
|
|
Jamain, A (2001). Benford’s Law. Master Thesis. Imperial College of London and ENSIMAG.
|
 |
|
|
|
Kossovsky, AE (2006). Towards a Better Understanding of the Leading Digits Phenomena. posted December 21, 2006 on arXiv:math/0612627.
|
 |
|
|
|
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558.
|
 |
|
|
|
Matthews, R (1999). The Power of One. New Scientist 163, July 10, pp. 26-30.
|
 |
|
|
|
Mebane, WR Jr (2006). Election Forensics: Vote Counts and Benford’s Law. Proceedings of the Summer Meeting of the Political Methodology Society, UC-Davis, July, pp. 20-22.
|
 |
|
|
|
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1.
|
 |
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
 |
|
|
|
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91.
|
 |
|
|
|
Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83.
|
 |
|
|
|
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094.
|
 |
|
|
|
Pericchi, LR and Torres, DA (2011). Quick anomaly detection by the Newcomb-Benford law, with applications to electoral processes data from the USA, Puerto Rico and Venezuela. Statistical Science 26(4), pp. 502-16. DOI:10.1214/09-STS296.
|
 |
|
|
|
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851.
|
 |
|
|
|
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109.
|
 |
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
 |
|
|
|
Rauch, B, Brähler, G, Engel, S and Göttsche, M (2011). Fact and Fiction in EU-Governmental Economic Data. German Economic Review 12(3), pp. 243-255. DOI:10.1111/j.1468-0475.2011.00542.x.
|
 |
|
|
|
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830.
|
 |
|
|
|
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934.
|
 |
|
|
|