Al-Bandawi, H and Deng, G (2019). Classification of image distortion based on the generalized Benford’s law. Multimedia Tools and Applications, pp. 1-18. DOI:10.1007/s11042-019-7668-3.
|
|
|
|
|
Azevedo, CdS, Gonçalves, RF, Gava, VL and Spinola, MdM (2021). A Benford’s Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis. Physica A 567, p. 125626. DOI:10.1016/j.physa.2020.125626.
|
|
|
|
|
Bonettini, N, Bestagini, P, Milani, S and Tubaro, S (2020). On the use of Benford's law to detect GAN-generated images. Preprint arXiv:arXiv:2004.07682 [cs.CV]; last accessed April 21, 2020
(2020 25th International Conference on Pattern Recognition (ICPR), pp. 5495-5502)
.
|
|
|
|
|
Eckhartt, GM and Ruxton, GD (2023). Investigating and preventing scientific misconduct using Benford’s Law. Research Integrity and Peer Review 8(1). DOI:10.1186/s41073-022-00126-w.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Jolion, JM (2001). Images and Benford's Law. Journal of Mathematical Imaging and Vision 14(1), pp. 73-81. ISSN/ISBN:0924-9907. DOI:10.1023/A:1008363415314.
|
|
|
|
|
Marcel, M (2017). Benford_py: a Python Implementation of Benford's Law Tests. GitHub repository; last accessed October 8, 2021.
|
|
|
|
|
Maza-Quiroga, R, Thurnhofer-Hemsi, K, Lopez-Rodrıguez, D and Lopez-Rubio, E (2021). Rician Noise Estimation for 3D Magnetic Resonance Images Based
on Benford’s Law. In: de Bruijne M. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, vol 12906. Springer, Cham.. DOI:10.1007/978-3-030-87231-1_33.
|
|
|
|
|
Milani, S, Tagliasacchi, M and Tubaro, S (2014). Discriminating multiple JPEG compressions using first digit features. APSIPA Transactions on Signal and Information Processing 3, e19. DOI:10.1017/ATSIP.2014.19.
|
|
|
|
|
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1.
|
|
|
|
|
Pasquini, C, Boato, G and Pérez-González, F (2017). Statistical Detection of JPEG Traces in Digital Images in Uncompressed Formats. IEEE Transactions on Information Forensics and Security 12(12), pp. 2890-2905. DOI:10.1109/TIFS.2017.2725201.
|
|
|
|
|
Sanches, J and Marques, JS (2006). Image reconstruction using the Benford law. Proceedings of the IEEE International Conference on Image Processing, Atlanta, GA, October 2006, pp. 2029-2032. ISSN/ISBN:1522-4880. DOI:10.1109/ICIP.2006.312845.
|
|
|
|
|
Satapathy, G, Bhattacharya, G, Puhan, NB and Ho, ATS (2020). Generalized Benford’s Law for Fake Fingerprint Detection. Proceedings of 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, pp. 242-246. DOI:10.1109/ASPCON49795.2020.9276660.
|
|
|
|
|
Smith, SW (1997). Explaining Benford's Law. Chapter 34 in: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing: San Diego, CA. Republished in softcover by Newnes, 2002. ISSN/ISBN:0-9660176-3-3.
|
|
|
|
|
Varga, D (2021). Analysis of Benford’s Law for No-Reference Quality Assessment of Natural, Screen-Content, and Synthetic Images . Electronics 10(19), p. 2378. DOI:10.3390/electronics10192378.
|
|
|
|
|