This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. DOI:10.1371/journal.pone.0036624. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358. | ||||
Kak, S (2017). Power series models of self-similarity in social networks. Information Sciences 376, pp. 31-38 . DOI:10.1016/j.ins.2016.10.010. | ||||
Kak, S (2018). Variations on the Newcomb-Benford Law. Preprint arXiv:1806.06695 [physics.soc-ph]; last accessed January 31, 2022. | ||||
Kocameşe, M and Güçlü, FC (2010). Muhasebe Hilelerinin Ortaya Çıkartılmasında Benford Kanunu ve Rakamsal Analiz Yönetiminin Kullanımı [The Use of Benford's Law and Numerical Analysis Management to Detect Accounting Fraud]. İç Denetim Dergisi 26. TUR | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ and Miller, SJ (2007). Benford’s Law Applied to Hydrology Data—Results and Relevance to Other Geophysical Data. Mathematical Geology 39(5), 469-490. ISSN/ISBN:0882-8121. DOI:10.1007/s11004-007-9109-5. | ||||
Prandl, S, Lazarescu, M, Pham, DS, Soh, ST and Kak, S (2017). An Investigation of Power Law Probability Distributions for Network Anomaly Detection. 2017 IEEE Security and Privacy Workshops (SPW), pp. 217-222, . DOI:10.1109/SPW.2017.20. | ||||
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830. | ||||
Wong, SCY (2010). Testing Benford’s Law with the first two significant digits. Master's Thesis, University of Victoria, Canada. |