Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551572.





Breunig, C and Goerres, A (2011). Searching for Electoral Irregularities in an Established Democracy: Applying Benford’s Law Tests to Bundestag Elections in Unified Germany. Electoral Studies 30(3) September 2011, pp. 534545.





Cantu, F and Saiegh, SM (2010). A Supervised Machine Learning Procedure to Detect Electoral Fraud Using Digital Analysis. Preprint posted on SSRN; last accessed August 5, 2021. DOI:10.2139/ssrn.1594406.





Cho, WKT and Gaines, BJ (2007). Breaking the (Benford) law: Statistical fraud detection in campaign finance. American Statistician 61(3), pp. 218223. ISSN/ISBN:00031305. DOI:10.1198/000313007X223496.





De Marchi, S and Hamilton, JT (2006). Assessing the accuracy of selfreported data: An evaluation of the toxics release inventory. Journal of Risk and Uncertainty 32(1), pp. 5776. ISSN/ISBN:08955646. DOI:10.1007/s1079700666663.





Demir, B and Javorcik, B (2017). Forensics, Elasticities and Benford’s Law: Detecting Tax Fraud in International Trade. Eprint posted on semantic scholar.org, Dec 22, 2017.





Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), pp. 321329. ISSN/ISBN:02664763. DOI:10.1080/02664760601004940.





Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 15245586/Vol. V, pp. 1734.





Formann, AK (2010). The NewcombBenford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541.





Geyer, CL and Williamson, PP (2004). Detecting Fraud in Data Sets Using Benford's Law. Communications in Statistics: Simulation and Computation 33(1), pp. 229246. ISSN/ISBN:03610918. DOI:10.1081/SAC120028442.





Giles, DE (2007). Benford's law and naturally occurring prices in certain eBay auctions. Applied Economics Letters 14(3), pp. 157161. ISSN/ISBN:13504851. DOI:10.1080/13504850500425667.





GómezCamponovo M, Moreno, J, Idrovo, ÁJ, Páez, M and Achkar, M (2016). Monitoring the Paraguayan epidemiological dengue surveillance system (20092011) using Benford's law. Biomédica 36, pp. 58392. DOI:10.7705/biomedica.v36i4.2731.





GonzalezGarcia, J and Pastor, G (2009). Benford’s Law and Macroeconomic Data Quality. International Monetary Fund Working Paper WP/09/10, Statistics Department, January 2009.





Goodman, WM (2016). The promises and pitfalls of Benford's law. Significance 13(3) pp. 3841. DOI:10.1111/j.17409713.2016.00919.x.





Hill, TP (1995). A Statistical Derivation of the SignificantDigit Law. Statistical Science 10(4), pp. 354363. ISSN/ISBN:08834237.





Hill, TP (1998). The FirstDigit Phenomenon. American Scientist 86 (4), pp. 358363. ISSN/ISBN:00030996. DOI:10.1511/1998.4.358.





Horton, J, Kumar, DK and Wood, A (2020). Detecting academic fraud using Benford law: The case of Professor James Hunton. Research Policy 49(8), 104084
. DOI:10.1016/j.respol.2020.104084.





Hussain, SA (2010). The Application of Benford's Law in Forensic Accounting: An Analysis of Credit Bureau Data. Available at SSRN 1626696; last accessed Mar 10, 2021. DOI:10.2139/ssrn.1626696.





Idrovo, AJ, BojórquezChapela, I, FernándezNiño, JA and MorenoMontoya, J (2011). Performance of public health surveillance systems during the influenza A(H1N1) pandemic in the Americas: testing a new method based on Benford's Law. Epidemiol. Infect. 139(12), pp. 182734. ISSN/ISBN:14694409. DOI:10.1017/S095026881100015X.





Idrovo, AJ and ManriqueHernández, EF (2020). Data Quality of Chinese Surveillance of COVID19: Objective Analysis Based on WHO’s Situation Reports. Asia Pacific Journal of Public Health. DOI:10.1177/1010539520927265.





Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 124. DOI:10.3368/jhr.44.1.1.





Kaiser, M (2019). Benford’s Law As An Indicator Of Survey Reliability—Can We Trust Our Data?. Journal of Economic Surveys Vol. 00, No. 0, pp. 1–17. DOI:10.1111/joes.12338.





Kalaichelvan, M and Jie, SLK (2012). A Critical Evaluation of the Significance of Round Numbers in European Equity Markets in Light of the Predictions from Benford's Law. International Research Journal of Finance and Economics 95, pp. 196210. ISSN/ISBN:14502887.





Koch, C and Okamura, K (2020). Benford's Law and COVID19 Reporting. Posted on SSRN April 28, 2020; last accessed November 17, 2020. Published in Econ Lett 2020;196(109973) .





Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236241. ISSN/ISBN:00031305. DOI:10.2307/2685773.





Michalski, T and Stoltz, G (2013). Do Countries Falsify Economic Data Strategically? Some Evidence That They Might. The Review of Economics and Statistics, Vol. 95, No. 2, pp. 591616. DOI:10.1162/REST_a_00274.





Morrow, J (2014). Benford’s Law, Families of Distributions and a Test Basis. Center for Economic Performance Discussion Paper No 1291.





Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 3940. ISSN/ISBN:00029327. DOI:10.2307/2369148.





Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 7291.





Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:9781118152850. DOI:10.1002/9781119203094.





Nye, J and Moul, C (2007). The Political Economy of Numbers: On the Application of Benford's Law to International Macroeconomic Statistics. The BE Journal of Macroeconomics 7(1), pp. 114. DOI:10.2202/19351690.1449.





O'Keefe, J and Yom, C (2017). Offsite Detection of Insider Abuse and Bank Fraud among U.S. Failed Banks 19892015. Available at SSRN: https://ssrn.com/abstract=3013174. DOI:10.2139/ssrn.3013174.





Peng, Y and Nagata, MH (2020). Statistical analysis of the Chinese COVID19 data with Benford's Law and clustering. Posted on LAMFO blog, Universidad de Brazilia on April 21, 2020; last accessed November 17, 2020.





Pinilla, J, LópezValcárcel, BG, GonzálezMartel, C and Peiro, S (2018). Pinocchio testing in the forensic analysis of waiting lists: using public waiting list data from Finland and Spain for testing NewcombBenford’s Law. BMJ open,8(5), pp. 16. ISSN/ISBN:20446055. DOI:10.1136/bmjopen2018022079.





Rauch, B, Brähler, G, Engel, S and Göttsche, M (2011). Fact and Fiction in EUGovernmental Economic Data. German Economic Review 12(3), pp. 243255. DOI:10.1111/j.14680475.2011.00542.x.





Rauch, B, Göttsche, M and El Mouaaouy, F (2013). LIBOR Manipulation – Empirical Analysis of Financial Market Benchmarks Using Benford's Law. Posted December 5, 2013. Available at SSRN: https://ssrn.com/abstract=2363895. Last accessed May 15, 2017. DOI:10.2139/ssrn.2363895.





Sambridge, M and Jackson, A (2020). National COVID numbers — Benford’s law looks for errors. Nature 581(7809), p. 384. DOI:10.1038/d41586020015655.





Stambaugh, C, Tipgos, MA, Carpenter, F and Smith, M (2012). Using Benford Analysis to Detect Fraud. Internal Auditing 27(3), pp. 2429.





Suh, I, Headrick, TC and Minaburo, S (2011). An Effective and Efficient Analytic Technique: A Bootstrap Regression Procedure and Benford's Law. Journal of Forensic & Investigative Accounting, Vol.3, No. 3.





Varian, HR (1972). Benford’s law. The American Statistician 26(3), 6566. DOI:10.1080/00031305.1972.10478934.





Zhang, J (2020). Testing Case Number of Coronavirus Disease 2019 in China with NewcombBenford Law. Preprint arXiv:2002.05695 [physics.socph]; last accessed February 18, 2020.




