This work cites the following items of the Benford Online Bibliography:
Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. | ||||
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5. | ||||
Brown, JR and Duncan, RL (1970). Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences. Fibonacci Quarterly 8, pp. 482-486. ISSN/ISBN:0015-0517. | ||||
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63. | ||||
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. | ||||
Cohen, DIA and Katz, TM (1984). Prime Numbers and the First Digit Phenomenon. Journal of Number Theory 18(3), pp. 261-268. ISSN/ISBN:0022-314X. DOI:10.1016/0022-314X(84)90061-1. | ||||
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. | ||||
Gottwald, GA and Nicol, M (2002). On the nature of Benford’s law. Physica A: Statistical Mechanics and its Applications 303(3-4), 387-396. | ||||
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (1997). Benford law. Encyclopedia of Mathematics Supplement, vol. 1, pp. 102-103. | ||||
Janvresse, E and de la Rue, T (2004). From Uniform Distributions to Benford’s Law. Journal of Applied Probability 41(4), pp. 1203-1210. ISSN/ISBN:0021-9002. | ||||
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. | ||||
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91. | ||||
Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83. | ||||
Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. | ||||
Schatte, P (1990). On Benford’s law for continued fractions. Math. Nachr. 148, 137-144. DOI:10.1002/mana.3211480108. | ||||
Sloane, NJA (2003). The On-Line Encyclopedia of Integer Sequences (OEIS). https://oeis.org, last accessed February 13, 2017. | ||||
Tolle, CR, Budzien, JL and LaViolette, RA (2000). Do dynamical systems follow Benford's law?. Chaos, 10(2), 331-336. ISSN/ISBN:1054-1500. DOI:10.1063/1.166498. | ||||
Vogt, W (2000). Benford’s Gesetz : Steuer- und Budgetsündern auf der Spur – Zahlen lügen nicht. Schweizer Versicherung 9, 27-29. GER | ||||
Weyl, H (1916). Über die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen 77, 313-352. ISSN/ISBN:0025-5831. DOI:10.1007/BF01475864. GER | ||||
Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152. ISSN/ISBN:0002-9890. |