Maza-Quiroga, R, Thurnhofer-Hemsi, K, Lopez-Rodrıguez, D and Lopez-Rubio, E (2021). Rician Noise Estimation for 3D Magnetic Resonance Images Based
on Benford’s Law. In: de Bruijne M. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, vol 12906. Springer, Cham..
This work cites the following items of the Benford Online Bibliography:
Al-Bandawi, H and Deng, G (2019). Classification of image distortion based on the generalized Benford’s law. Multimedia Tools and Applications, pp. 1-18. DOI:10.1007/s11042-019-7668-3.
|
|
|
|
|
Fu, D, Shi, YQ and Su, W (2007). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, Volume 6505, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, California, January 28 - February 1, 2007, pp. 65051L-65051L-11. DOI:10.1117/12.704723.
|
|
|
|
|
Jolion, JM (2001). Images and Benford's Law. Journal of Mathematical Imaging and Vision 14(1), pp. 73-81. ISSN/ISBN:0924-9907. DOI:10.1023/A:1008363415314.
|
|
|
|
|
Marcel, M (2017). Benford_py: a Python Implementation of Benford's Law Tests. GitHub repository; last accessed October 8, 2021.
|
|
|
|
|
Sanches, J and Marques, JS (2006). Image reconstruction using the Benford law. Proceedings of the IEEE International Conference on Image Processing, Atlanta, GA, October 2006, pp. 2029-2032. ISSN/ISBN:1522-4880. DOI:10.1109/ICIP.2006.312845.
|
|
|
|
|
Smith, SW (1997). Explaining Benford's Law. Chapter 34 in: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing: San Diego, CA. Republished in softcover by Newnes, 2002. ISSN/ISBN:0-9660176-3-3.
|
|
|
|
|