This work cites the following items of the Benford Online Bibliography:
Alexopoulos, T and Leontsinis, S (2014). Benford's Law in Astronomy. Journal of Astrophysics and Astronomy, 35(4), pp. 639-648. ISSN/ISBN:0250-6335. DOI:10.1007/s12036-014-9303-z. | ||||
Alves, AD, Yanasee, HH and Soma, NY (2016). An analysis of bibliometric indicators to JCR according to Benford’s law. Scientometrics 107(3), pp. 1489–1499. DOI:10.1007/s11192-016-1908-3. | ||||
Ausloos, M, Castellano, R and Cerqueti, R (2016). Regularities and discrepancies of credit default swaps: a data science approach through Benford's law. Chaos, Solitons & Fractals 90, pp. 8-17. DOI:10.1016/j.chaos.2016.03.002. | ||||
Ausloos, M, Cerqueti, R and Lupi, C (2017). Long-range properties and data validity for hydrogeological time series: The case of the Paglia river. Physica A: Statistical Mechanics and its Applications 470, pp. 39-50. DOI:10.1016/j.physa.2016.11.137. | ||||
Ausloos, M, Ficcadenti, V, Dhesi, G and Shakeel, M (2021). Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity. Physica A: Statistical Mechanics and its Applications 574, pp. 125969. DOI:10.1016/j.physa.2021.125969. | ||||
Ausloos, M, Herteliu, C and Ileanu, B-V (2015). Breakdown of Benford’s law for birth data. Physica A: Statistical Mechanics and its Applications Volume 419, pp. 736–745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Clippe, P and Ausloos, M (2012). Benford's law and Theil transform of financial data. Physica A: Statistical Mechanics and its Applications 391(24), pp. 6556–6567. | ||||
Druica, E, Oancea, B and Valsan, C (2018). Benford's law and the limits of digit analysis. International Journal of Accounting Information Systems 31, pp. 75–82. DOI:10.1016/j.accinf.2018.09.004. | ||||
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34. | ||||
Gini, C (1957). Sulla frequenza delle cifre iniziali dei numeri osservati. Bull. Inst. Internat. Stat., 29th session, 35(2), pp. 57-76. ITA | ||||
Hürlimann, W (2015). On the uniform random upper bound family of first significant digit distributions. Journal of Informetrics, Volume 9, Issue 2, pp. 349–358. DOI:10.1016/j.joi.2015.02.007. | ||||
Jianu, Io and Jianu, Iu (2021). Reliability of Financial Information from the Perspective of Benford’s Law. Entropy 23(5), article no. 557. DOI:10.3390/e23050557. | ||||
Kaiser, M (2019). Benford’s Law As An Indicator Of Survey Reliability—Can We Trust Our Data?. Journal of Economic Surveys Vol. 00, No. 0, pp. 1–17. DOI:10.1111/joes.12338. | ||||
Kennedy, AP and Yam, SCP (2020). On the authenticity of COVID-19 case figures. PLoS ONE 15(12): e0243123. DOI:10.1371/journal.pone.0243123. | ||||
Lee, K-B, Han, S and Jeong, Y (2020). COVID-19, flattening the curve, and Benford’s law. Physica A: Statistical Mechanics and its Applications 559, 125090. DOI:10.1016/j.physa.2020.125090. | ||||
Mir, TA (2014). The Benford law behavior of the religious activity data. Physica A 408, pp. 1-9. DOI:10.1016/j.physa.2014.03.074. | ||||
Mir, TA and Ausloos, M (2018). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology 69(3) pp. 349–358. DOI:10.1002/asi.23845. | ||||
Mir, TA, Ausloos, M and Cerqueti, R (2014). Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions. Eur. Phys. J. B (2014) 87: 261. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2014-50525-2. | ||||
Miranda-Zanetti, M, Delbianco, F and Tohmé, F (2019). Tampering with inflation data: A Benford law-based analysis of national statistics in Argentina. Physica A: Statistical Mechanics and its Applications 525, pp. 761-770. DOI:10.1016/j.physa.2019.04.042. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83. | ||||
Nigrini, MJ (2015). Persistent Patterns in Stock Returns, Stock Volumes, and Accounting Data in the U.S. Capital Markets. Journal of Accounting, Auditing & Finance, Vol. 30(4) pp. 541–557. DOI:10.1177/0148558X15584051. | ||||
Perrotta, D, Cerioli, A and Barabesi, L (2019). Conference Announcement: Cross-domain Conference on Benford's Law application. Stresa, Italy, July 10-12. | ||||
Poincaré, H (1912). Répartition des décimales dans une table numérique. pp 313-320 in: Calcul des Probabilités, Gauthier-Villars, Paris. FRE | ||||
Riccioni, J and Cerqueti, R (2018). Regular paths in financial markets: Investigating the Benford’s law. Chaos, Solitons and Fractals 107, pp. 186-194. DOI:10.1016/j.chaos.2018.01.008. | ||||
Shi, J, Ausloos, M and Zhu, T (2018). Benford's law is the first significant digit and distribution distances for testing the reliability of financial reports in developing countries. Physica A: Statistical Mechanics and its Applications 492(1), pp. 878-888. DOI:10.1016/j.physa.2017.11.017. | ||||
Stigler, GJ (1945). The distribution of leading digits in statistical tables. University of Chicago, Regenstein Library, Special Collections, George J. Stigler Archives. |