Bao, Y, Heilig, F, Lee, C-H and Lusk, EJ (2018). Full range testing of the small size effect bias for Benford screening: A note. International Journal of Economics and Finance 10(6), pp. 47-52. DOI:10.5539/ijef.v10n6p47.
|
|
|
|
|
Bao, Y, Lee, C-H, Heilig, F and Lusk, EJ (2018). Empirical information on the small size effect bias relative to the false positive rejection error for Benford test-screening. International Journal of Economics and Finance 10(2), pp. 1-9. DOI:10.5539/ijef.v10n2p1.
|
|
|
|
|
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Cho, WKT and Gaines, BJ (2007). Breaking the (Benford) law: Statistical fraud detection in campaign finance. American Statistician 61(3), pp. 218-223. ISSN/ISBN:0003-1305. DOI:10.1198/000313007X223496.
|
|
|
|
|
Collins, JC (2017). Using Excel and Benford’s Law to detect fraud. Journal of Accountancy Feature/Technology Workshop, April 1.
|
|
|
|
|
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34.
|
|
|
|
|
Heilig, F and Lusk, EJ (2017). A robust Newcomb-Benford account screening profiler: An audit decision support system. International Journal of Financial Research 8(3), pp. 27-39. DOI:10.5430/ijfr.v8n3p27.
|
|
|
|
|
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815.
|
|
|
|
|
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358.
|
|
|
|
|
Lusk, EJ and Halperin, M (2014). Using the Benford Datasets and the Reddy and Sebastin Results to Form an Audit Alert Screening Heuristic: An Appraisal. The IUP Journal of Accounting Research and Audit Practices, vol. XIII, issue 3, pp. 56-69.
|
|
|
|
|
Lusk, EJ and Halperin, M (2015). Testing the mixing property of the Newcomb-Benford Profile: Implications for the audit context. International Journal of Economics & Finance 7(6), pp. 42-50. DOI:10.5539/ijef.v7n6p42.
|
|
|
|
|
Mir, TA (2016). The leading digit distribution of the worldwide illicit financial flows. Quality & Quantity vol. 50, p. 271-281. DOI:10.1007/s11135-014-0147-z.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91.
|
|
|
|
|
Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380.
|
|
|
|
|
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571.
|
|
|
|
|
Wallace, WA (2002). Assessing the quality of data used for benchmarking and decision-making. The Journal of Government Financial Management 51(3), pp. 16-22.
|
|
|
|
|