Abrantes-Metz, RM and Villas-Boas, SB (2010). Tracking the Libor Rate. Available at SSRN: https://ssrn.com/abstract=1646600. DOI:10.2139/ssrn.1646600.
|
|
|
|
|
Abrantes-Metz, RM, Villas-Boas, SB and Judge, G (2011). Tracking the Libor rate. Applied Economics Letters 18(10), pp. 893-899. ISSN/ISBN:1466-4291. DOI:10.1080/13504851.2010.515197.
|
|
|
|
|
Amiram, D, Bozanic, Z and Rouen, E (2015). Financial statement errors: evidence from the distributional properties of financial statement numbers. Review of Accounting Studies 20(4), pp. 1540–1593. DOI:10.1007/s11142-015-9333-z.
|
|
|
|
|
Ausloos, M, Castellano, R and Cerqueti, R (2016). Regularities and discrepancies of credit default swaps: a data science approach through Benford's law. Chaos, Solitons & Fractals 90, pp. 8-17. DOI:10.1016/j.chaos.2016.03.002.
|
|
|
|
|
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2018). Goodness-of-fit testing for the Newcomb-Benford law with application to the detection of customs fraud. Journal of Business & Economic Statistics 36(2), pp. 346-358. DOI:10.1080/07350015.2016.1172014.
|
|
|
|
|
Bauer, J and Gross, J (2011). Difficulties Detecting Fraud? The Use of Benford’s Law on Regression Tables. Journal of Economics and Statistics (Jahrbücher für Nationalökonomie und Statistik) 231(5-6), pp. 733-748.
|
|
|
|
|
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136.
|
|
|
|
|
Bredl, S, Storfinger, N and Menold, N (2011). A literature review of methods to detect fabricated survey data. Discussion Paper, No. 56, Justus-Liebig- Universität Gießen, Zentrum für Internationale Entwicklungs- und Umweltforschung (ZEU), Giessen. Also appears in: Interviewers’ deviations in surveys. Ed. by N. Menold, P. Winker, and R. Porst. Schriften zur empir.
|
|
|
|
|
Bredl, S, Winker, P and Kötschau, K (2012). A statistical approach to detect interviewer falsification of survey data. Survey Methodology, Vol. 38, No. 1, pp. 1-10.
|
|
|
|
|
Carslaw, CAPN (1988). Anomalies in Income Numbers: Evidence of Goal Oriented Behavior. The Accounting Review 63(2), pp. 321-327.
|
|
|
|
|
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019.
|
|
|
|
|
Cleary, R and Thibodeau, JC (2005). Applying Digital Analysis Using Benford‘s Law to Detect Fraud: The Dangers of Type I Errors. Auditing - A Journal of Practice & Theory 24(1), pp. 77-81. ISSN/ISBN:0278-0380. DOI:10.2308/aud.2005.24.1.77.
|
|
|
|
|
Corazza, M, Ellero, A and Zorzi, A (2010). Checking financial markets via Benford's law: the S&P 500 case. In: Corazza, M and Pizzi, C (Eds.): Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer, pp. 93-102. DOI:10.1007/978-88-470-1481-7_10.
|
|
|
|
|
Deleanu, IS (2017). Do Countries Consistently Engage in Misinforming the International Community about Their Efforts to Combat Money Laundering? Evidence Using Benford's Law. PLoS One 12(1), p. e0169632. DOI:10.1371/journal.pone.0169632.
|
|
|
|
|
Diaconis, P and Freedman, D (1979). On Rounding Percentages. Journal of the American Statistical Association 74(366), pp. 359-364. ISSN/ISBN:0162-1459.
|
|
|
|
|
Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), pp. 321-329. ISSN/ISBN:0266-4763. DOI:10.1080/02664760601004940.
|
|
|
|
|
Diekmann, A and Jann, B (2010). Benford’s Law and Fraud Detection: Facts and Legends. German Economic Review 11(3), pp. 397–401. DOI:10.1111/j.1468-0475.2010.00510.x.
|
|
|
|
|
Drake, PD and Nigrini, MJ (2000). Computer assisted analytical procedures using Benford’s law. Journal of Accounting Education 18, pp. 127-146. DOI:10.1016/S0748-5751(00)00008-7.
|
|
|
|
|
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358.
|
|
|
|
|
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34.
|
|
|
|
|
El Mouaaouy, F and Riepe, J (2018). Benford and the Internal Capital Market: A Useful Indicator of Managerial Engagement. German Economic Review 19, pp. 309-329. DOI:10.1111/geer.12129.
|
|
|
|
|
Fewster, RM (2009). A Simple Explanation of Benford's Law. American Statistician 63(1), pp. 26-32. DOI:10.1198/tast.2009.0005.
|
|
|
|
|
Gauvrit, N and Delahaye, J-P (2011). Scatter and Regularity Implies Benford's Law... and More. in H. Zenil (Ed.) Randomness Through Complexity, Singapore, World Scientific, 53-69. ISSN/ISBN:13978-981-4327-74-9.
|
|
|
|
|
Gonzalez-Garcia, J and Pastor, G (2009). Benford’s Law and Macroeconomic Data Quality. International Monetary Fund Working Paper WP/09/10, Statistics Department, January 2009.
|
|
|
|
|
Goodman, WM (2016). The promises and pitfalls of Benford's law. Significance 13(3) pp. 38-41. DOI:10.1111/j.1740-9713.2016.00919.x.
|
|
|
|
|
Henselmann, K, Ditter, D and Scherr, E (2015). Irregularities in accounting numbers and earnings management - A novel approach based on SEC XBRL filings. Journal of Emerging Technologies in Accounting 12 (1), pp. 117–151. DOI:10.2308/jeta-51247.
|
|
|
|
|
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Hofmacher, P and Hornik, K (2013). First Significant Digits and the Credit Derivative Market During the Financial Crisis. Contemporary Economics 7(2), pp. 21-29. DOI:10.5709/ce.1897-9254.80.
|
|
|
|
|
Holz, CA (2014). The quality of China’s GDP statistics. China Economic Review, vol. 30, September 2014, pp. 309–338. DOI:10.1016/j.chieco.2014.06.009.
|
|
|
|
|
Hürlimann, W (2006). Benford's Law from 1881 to 2006: A Bibliography. posted on math arXiv July 6, 2006; last accessed February 28, 2016.
|
|
|
|
|
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284.
|
|
|
|
|
Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 1-24. DOI:10.3368/jhr.44.1.1.
|
|
|
|
|
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558.
|
|
|
|
|
Lin, F, Lin, L-J, Yeh, C-C and Wang-T-S (2018). Does the board of directors as Fat Cats exert more earnings management? Evidence from Benford's law. The Quarterly Review of Economics and Finance 68, pp. 158-170. DOI:10.1016/j.qref.2017.09.005.
|
|
|
|
|
Lu, F and Boritz, JE (2005). Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford’s Law Distributions. Machine Learning: ECML 2005 (Proceedings). Lecture Notes in Artificial Intelligence 3270, pp. 633-640. ISSN/ISBN:0302-9743.
|
|
|
|
|
Michalski, T and Stoltz, G (2013). Do Countries Falsify Economic Data Strategically? Some Evidence That They Might. The Review of Economics and Statistics 95(2), pp. 591-616. DOI:10.1162/REST_a_00274.
|
|
|
|
|
Mir, TA and Ausloos, M (2018). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology 69(3) pp. 349–358. DOI:10.1002/asi.23845.
|
|
|
|
|
Mosimann, JE, Wiseman CV and Edelman RE (1995). Data fabrication: Can people generate random digits?. Accountability in Research: Policies and Quality Assurance 4(1), pp. 31-55. DOI:10.1080/08989629508573866.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Nigrini, MJ (1994). Using digital frequencies to detect fraud. Fraud Magazine, The White Paper Index 8(2), pp. 3-6.
|
|
|
|
|
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91.
|
|
|
|
|
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094.
|
|
|
|
|
Nigrini, MJ and Miller, SJ (2009). Data Diagnostics Using Second-Order Tests of Benford's Law. Auditing: A Journal of Practice & Theory 28(2), pp. 305-324. DOI:10.2308/aud.2009.28.2.305
.
|
|
|
|
|
Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380.
|
|
|
|
|
Nye, J and Moul, C (2007). The Political Economy of Numbers: On the Application of Benford's Law to International Macroeconomic Statistics. The BE Journal of Macroeconomics 7(1), pp. 1-14. DOI:10.2202/1935-1690.1449.
|
|
|
|
|
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851.
|
|
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
|
|
|
|
Rauch, B, Brähler, G, Engel, S and Göttsche, M (2011). Fact and Fiction in EU-Governmental Economic Data. German Economic Review 12(3), pp. 243-255. DOI:10.1111/j.1468-0475.2011.00542.x.
|
|
|
|
|
Rauch, B, Göttsche, M, El Mouaaouy, F and Geidl, F (2013). Empirical methods in competition analysis – Applying Benford’s law to the Western Australian petroleum market. Available at SSRN: https://ssrn.com/abstract=2364384; last accessed Dec 7, 2019. DOI:10.2139/ssrn.2364384.
|
|
|
|
|
Rodriguez, RJ (2004). First Significant Digit Patterns from Mixtures of Uniform Distributions. American Statistician 58(1), pp. 64-71. ISSN/ISBN:0003-1305. DOI:10.1198/0003130042782.
|
|
|
|
|
Schräpler, J-P (2011). Benford's Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 231(5-6). DOI:10.1515/jbnst-2011-5-609.
|
|
|
|
|
Schündeln, M (2018). Multiple Visits and Data Quality in Household Surveys. Oxford Bulletin of Economics and Statistics 80(2), pp. 380-405. DOI:10.1111/obes.12196.
|
|
|
|
|
Shi, J, Ausloos, M and Zhu, T (2018). Benford's law is the first significant digit and distribution distances for testing the reliability of financial reports in developing countries. Physica A: Statistical Mechanics and its Applications 492(1), pp. 878-888. DOI:10.1016/j.physa.2017.11.017.
|
|
|
|
|
Smith, SW (1997). Explaining Benford's Law. Chapter 34 in: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing: San Diego, CA. Republished in softcover by Newnes, 2002. ISSN/ISBN:0-9660176-3-3.
|
|
|
|
|
Thomas, JK (1989). Unusual Patterns in Reported Earnings. Accounting Review 64(4), 773-787. ISSN/ISBN:0001-4826.
|
|
|
|
|
Tödter, K-H (2009). Benford's Law as an Indicator of Fraud in Economics. German Economic Review 10(3), 339-351. DOI:10.1111/j.1468-0475.2009.00475.x.
|
|
|
|
|
Ullman, R and Watrin, C (2017). Detecting Target-Driven Earnings Management Based on the Distribution of Digits. Journal of Business Finance & Accounting 44 (1-2), pp. 63-93. DOI:10.1111/jbfa.12223.
|
|
|
|
|
Wallace, WA (2002). Assessing the quality of data used for benchmarking and decision-making. The Journal of Government Financial Management 51(3), pp. 16-22.
|
|
|
|
|
Watrin, C, Struffert, R and Ullmann, R (2008). Benford’s Law: an instrument for selecting tax audit targets?. Review of Managerial Science 2(3), 219-237. DOI:10.1007/s11846-008-0019-9.
|
|
|
|
|
Winker, P (2016). Assuring the quality of survey data: Incentives, detection and documentation of deviant behavior. Statistical Journal of the IAOS 32 (3), pp. 295–303. DOI:10.3233/SJI-161012.
|
|
|
|
|
Winter, C, Schneider, M and Yannikos, Y (2012). Model-Based Digit Analysis for Fraud Detection overcomes Limitations of Benford Analysis. Availability, Reliability and Security (ARES 2012), Seventh International Conference, August 20–24, 2012, Prague, Czech Republic.
IEEE CS volume E4775, pages 255–261.
IEEE Computer Society. ISSN/ISBN:978-1-4673-2244-7 . DOI:10.1109/ARES.2012.37.
|
|
|
|
|