Amiram, D, Bozanic, Z and Rouen, E (2015). Financial statement errors: evidence from the distributional properties of financial statement numbers. Review of Accounting Studies 20(4), pp. 1540–1593. DOI:10.1007/s111420159333z.





Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2018). Goodnessoffit testing for the NewcombBenford law with application to the detection of customs fraud. Journal of Business & Economic Statistics 36(2), pp. 346358. DOI:10.1080/07350015.2016.1172014.





Cho, WKT and Gaines, BJ (2007). Breaking the (Benford) law: Statistical fraud detection in campaign finance. American Statistician 61(3), pp. 218223. ISSN/ISBN:00031305. DOI:10.1198/000313007X223496.





Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 15245586/Vol. V, pp. 1734.





Hill, TP (1995). A Statistical Derivation of the SignificantDigit Law. Statistical Science 10(4), pp. 354363. ISSN/ISBN:08834237.





Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 124. DOI:10.3368/jhr.44.1.1.





Michalski, T and Stoltz, G (2013). Do Countries Falsify Economic Data Strategically? Some Evidence That They Might. The Review of Economics and Statistics, Vol. 95, No. 2, pp. 591616. DOI:10.1162/REST_a_00274.





Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:9780691147611.





Morrow, J (2014). Benford’s Law, Families of Distributions and a Test Basis. Center for Economic Performance Discussion Paper No 1291.





Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:9781118152850. DOI:10.1002/9781119203094.




