Cross Reference Down

Tseng, H-C, Huang, W-N and Huang, D-W (2017). Modified Benford’s law for two-exponent distributions. Scientometrics 110(3), pp. 1403–1413.

This work cites the following items of the Benford Online Bibliography:


Alves, AD, Yanasee, HH and Soma, NY (2016). An analysis of bibliometric indicators to JCR according to Benford’s law. Scientometrics 107(3), pp. 1489–1499. DOI:10.1007/s11192-016-1908-3. View Complete Reference Online information Works that this work references Works that reference this work
Alves, AD, Yanasse, HH and Soma, NY (2014). Benford's Law and articles of scientific journals: comparison of JCR® and Scopus data. Scientometrics 98, pp. 173-184. ISSN/ISBN:0138-9130. DOI:10.1007/s11192-013-1030-8. View Complete Reference Online information Works that this work references Works that reference this work
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. View Complete Reference Online information Works that this work references Works that reference this work
Campanario, JM and Coslado, MA (2011). Benford's law and citations, articles and impact factors of scientific journals. Scientometrics 88(2), pp. 421-432. DOI:10.1007/s11192-011-0387-9. View Complete Reference Online information Works that this work references Works that reference this work
Egghe, L and Guns, R (2012). Applications of the generalized law of Benford to informetric data. Journal of the American Society for Information Science and Technology 63(8), pp. 1662-1665. ISSN/ISBN:1532-2882. DOI:10.1002/asi.22690. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2015). On the uniform random upper bound family of first significant digit distributions. Journal of Informetrics, Volume 9, Issue 2, pp. 349–358. DOI:10.1016/j.joi.2015.02.007. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. View Complete Reference Online information Works that this work references Works that reference this work
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. View Complete Reference Online information Works that this work references Works that reference this work
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6. View Complete Reference Online information Works that this work references Works that reference this work
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. View Complete Reference Online information Works that this work references Works that reference this work