This work cites the following items of the Benford Online Bibliography:
Aldous, D and Phan, T (2010). When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT. The American Statistician 64(3), pp. 221–227. ISSN/ISBN:0003-1305. DOI:10.1198/tast.2010.09098. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Block, HW and Savits, TH (2010). A General Example for Benford Data. The American Statistician 64(4), pp. 335-339. | ||||
Cho, WKT and Gaines, BJ (2007). Breaking the (Benford) law: Statistical fraud detection in campaign finance. American Statistician 61(3), pp. 218-223. ISSN/ISBN:0003-1305. DOI:10.1198/000313007X223496. | ||||
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. | ||||
El Sehity, T, Hoelzl, E and Kirchler, E (2005). Price developments after a nominal shock: Benford's Law and psychological pricing after the euro introduction. International Journal of Research in Marketing 22(4), pp. 471-480. ISSN/ISBN:0167-8116. DOI:10.1016/j.ijresmar.2005.09.002. | ||||
Fellman, J (2014). The Benford paradox. Journal of statistical and econometric methods 3(4), pp. 1-20. ISSN/ISBN:2241-0384 . | ||||
Fellman, J (2016). En statistisk paradox. Quintensen No.2, pp. 15-17. SWE | ||||
Fewster, RM (2009). A Simple Explanation of Benford's Law. American Statistician 63(1), pp. 26-32. DOI:10.1198/tast.2009.0005. | ||||
Gonzalez-Garcia, J and Pastor, G (2009). Benford’s Law and Macroeconomic Data Quality. International Monetary Fund Working Paper WP/09/10, Statistics Department, January 2009. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. | ||||
Morrow, J (2010). Benford's Law, Families of Distributions and a Test Basis. E-print formerly published on www.johnmorrow.info; last accessed Mar 10, 2021. . | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Sandron, F (2002). Do populations conform to the law of anomalous numbers?. Population 57(4/5), 753-761 (translated from French by SR Hayford). ISSN/ISBN:1634-2941. DOI:10.3917/popu.204.0761. | ||||
Smith, SW (1997). Explaining Benford's Law. Chapter 34 in: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing: San Diego, CA. Republished in softcover by Newnes, 2002. ISSN/ISBN:0-9660176-3-3. | ||||
Weyl, H (1916). Über die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen 77, 313-352. ISSN/ISBN:0025-5831. DOI:10.1007/BF01475864. GER |