Hürlimann, W (2016). First digit counting compatibility II: twin prime powers. Journal of Progressive Research in Mathematics(JPRM) 9(1), pp. 13411349.
This work cites the following items of the Benford Online Bibliography:
Beebe, NHF (2018). A bibliography of publications about Benford's law, Heap's law and Zipf's law. Available online from: ftp://ftp.math.utah.edu/public_html/public_html/
pub/tex/bib/benfordslaw.pdf (last accessed July 16, 2021).





Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551572.





Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.





Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 3946.





Hürlimann, W (2006). Benford's Law from 1881 to 2006: A Bibliography. posted on math arXiv July 6, 2006; last accessed February 28, 2016.





Hürlimann, W (2015). Prime powers and generalized Benford law. Pioneer Journal of Algebra, Number Theory and its Applications 12/2015; 10(12):5170.





Hürlimann, W (2016). First digit counting compatibility for Niven integer powers. Journal of Progressive Research in Mathematics 7(4). ISSN/ISBN:23950218.





Luque, B and Lacasa, L (2009). The firstdigit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126.





Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:9780691147611.





Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 3940. ISSN/ISBN:00029327. DOI:10.2307/2369148.




