This work cites the following items of the Benford Online Bibliography:
Beebe, NHF (2018). A bibliography of publications about Benford's law, Heap's law and Zipf's law. Available online from: ftp://ftp.math.utah.edu/public_html/public_html/ pub/tex/bib/benfords-law.pdf (last accessed July 16, 2021). | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Cáceres, JLH, García, JLP, Ortiz, CMM and Dominguez, LG (2008). First digit distribution in some biological data sets. Possible explanations for departures from Benford's Law. Electronic J Biomed 1, pp. 27-35. | ||||
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. | ||||
Furlan, LV (1946). Das Harmoniegesetz der Statistik: Eine Untersuchung ueber die metrische Interdependenz der sozialen Erscheinungen. Basel, Verlag fuer Recht und Gesellschaft AG, xiii:504p. DOI:10.1111/j.1467-6435.1948.tb00591.x. GER | ||||
Furry, WH and Hurwitz, H (1945). Distribution of numbers and distribution of significant figures. Nature 155(3924), pp. 52-53. DOI:doi:10.1038/155052a0. | ||||
Goudsmit, SA and Furry, WH (1944). Significant figures of numbers in statistical tables. Nature 154(3921), pp. 800-801. ISSN/ISBN:0028-0836. DOI:10.1038/154800a0. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. | ||||
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. | ||||
Hürlimann, W (2006). Benford's Law from 1881 to 2006: A Bibliography. posted on math arXiv July 6, 2006; last accessed February 28, 2016. | ||||
Hürlimann, W (2014). A first digit theorem for powers of perfect powers. Communications in Mathematics and Applications 5(3), pp. 91-99. ISSN/ISBN:0975-8607. | ||||
Hürlimann, W (2014). A first digit theorem for square-free integer powers. Pure Mathematical Sciences 3(3), pp. 129 - 139. DOI:10.12988/pms.2014.4615. | ||||
Hürlimann, W (2015). On the uniform random upper bound family of first significant digit distributions. Journal of Informetrics, Volume 9, Issue 2, pp. 349–358. DOI:10.1016/j.joi.2015.02.007. | ||||
Lee, J, Cho, WKT and Judge, G (2010). Stigler’s approach to recovering the distribution of first significant digits in natural data sets. Statistics and Probability Letters 80(2), pp. 82-88. DOI:10.1016/j.spl.2009.09.015. | ||||
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. | ||||
Long, J (2014). Testing Benford's Law. Website: http://testingbenfordslaw.com/. Last accessed Apr 1, 2016. | ||||
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. | ||||
Morrow, J (2010). Benford's Law, Families of Distributions and a Test Basis. E-print formerly published on www.johnmorrow.info; last accessed Mar 10, 2021. . | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Nigrini, MJ and Miller, SJ (2007). Benford’s Law Applied to Hydrology Data—Results and Relevance to Other Geophysical Data. Mathematical Geology 39(5), 469-490. ISSN/ISBN:0882-8121. DOI:10.1007/s11004-007-9109-5. | ||||
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Rodriguez, RJ (2004). First Significant Digit Patterns from Mixtures of Uniform Distributions. American Statistician 58(1), pp. 64-71. ISSN/ISBN:0003-1305. DOI:10.1198/0003130042782. | ||||
Ross, KA (2012). First Digits of Squares and Cubes. Mathematics Magazine 85(1), pp. 36-42. DOI:10.4169/math.mag.85.1.36. | ||||
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830. | ||||
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. | ||||
Shao, L and Ma, BQ (2010). First-digit law in nonextensive statistics. Physical Review E 82, 041110. DOI:10.1103/PhysRevE.82.041110. | ||||
Stigler, GJ (1945). The distribution of leading digits in statistical tables. University of Chicago, Regenstein Library, Special Collections, George J. Stigler Archives. | ||||
Szpiro, G (2009). Neues aus dem Reich der Primzahlen. Neue Zürcher Zeitung, 27 Mai. GER | ||||
Wojcik, MR (2013). How fast increasing powers of a continuous random variable converge to Benford’s law. Statistics and Probability Letters 83, pp. 2688–2692. ISSN/ISBN:0167-7152. DOI:10.1016/j.spl.2013.09.003. | ||||
Wojcik, MR (2014). A characterization of Benford’s law through generalized scale-invariance. Mathematical Social Sciences, Volume 71, September 2014, pp. 1–5. DOI:10.1016/j.mathsocsci.2014.03.006. |